Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems

Jubin Jose, Student Member, IEEE, Alexei Ashikhmin, Senior Member, IEEE, Phil Whiting, and Sriram Vishwanath, Senior Member, IEEE

Abstract—Traditional approaches in the analysis of downlink systems decouple the precoding and the channel estimation problems. However, in cellular systems with mobile users, these two problems are, in fact, tightly coupled. In this paper, this coupling is explicitly studied by accounting for the channel training overhead and estimation error while determining the overall system throughput. This paper studies the problem of utilizing imperfect channel estimates for efficient linear precoding and user selection. It presents precoding methods that take into account the degree of channel estimation error. Information-theoretic lower and upper bounds are derived to evaluate the performance of these precoding methods. In typical scenarios, these bounds are close.

Index Terms—Cellular downlink, channel estimation, linear precoding, wireless communication.

I. INTRODUCTION

THERE is a rich and varied literature in the domain of multiple-antenna cellular systems. Since the introduction of multiantenna systems, almost every combination of antennas with physical settings has been modeled and analyzed. The bulk of this literature, however, has focused on developing strategies for frequency-division duplex (FDD) systems and not without a good reason. FDD systems have dominated deployment, whereas interest in deploying time-division duplex (TDD) systems has grown only in recent years. Although TDD and FDD seem like interchangeable architectural schemes for cellular systems, there are some fundamental differences that need to be isolated and studied in detail. The goal of this paper is to bring the understanding of TDD systems closer to FDD systems.

It is now well established that multiple antennas at the transmitter and the receiver in a point-to-point communication system can greatly improve the overall throughput of the system [2], [3]. In a multiuser setting, this gain requires channel-state information (CSI) and precoding strategies that use this CSI at the base station. Given this CSI, the channel capacity problem can be formulated in terms of a multiantenna Gaussian broadcast channel (BC). Over the last decade, the capacity of a multiantenna Gaussian BC has been determined and shown to be achieved by using dirty-paper coding (DPC) in [4]–[8]. Subsequently, the order growth in the sum capacity gain with the number of antennas and the signal-to-noise ratio (SNR) has been characterized in [9] and [10]. An overview of the capacity results in multiuser multiple-input–multiple-output (MIMO) channels can be found in [11].

Although DPC is known to be capacity achieving with perfect CSI, there are several issues when attempting to directly apply it to a cellular system. First, practical systems have to cope with rapidly changing channels so that channel estimates are valid only for a very short time, making the application of DPC a fraught problem. Furthermore, we are mainly concerned with systems that have a large number of base-station antennas. In such systems, the use of DPC may turn out to be prohibitively complex. In contrast, several antenna systems with linear precoding offer a much more practical route to provide high-rate wireless communications. Estimation error is an inevitable issue for the linear precoded system (as well as for DPC), and therefore, this paper concentrates on this question. Detailed investigation of DPC performance with channel estimates obtained from TDD pilots remains a question for further research.

Given that we use linear precoding, the goal of this paper is to analyze a multiantenna downlink TDD system with channel training and estimation error factored into the net throughput expression. One of the primary differences between TDD and FDD systems is the means through which channel training and the resulting estimation is conducted. In FDD systems, one common means of gaining CSI is the feedback from the users to the base station. In TDD systems, channel reciprocity can be used to train on the reverse link and obtain an estimate of the channel at the base station; for example, see [12] and [13]. In [14], channel reciprocity has been validated through experiments. Reciprocity thus eliminates the need for a feedback mechanism (along with forward training) to be developed.

In the literature, joint precoding and feedback schemes for FDD systems have been studied in great detail [15]–[19] (see Section I-A for details). Similarly, we find that a joint study of channel estimation and precoding for TDD systems is needed to understand the resulting overall system throughput. To provide some typical system parameters, consider a carrier frequency of 1900 MHz and a (maximum) mobile velocity of 150 mi/h.
Then, the coherence time is approximately 400 μs [20]. With a typical coherence bandwidth of 50–200 kHz, the effective symbol rates for narrowband operation is approximately 5–20 μs. This condition leads to a short coherence time in 20–80 symbols, which clearly motivates our joint study of channel training, channel estimation, and precoding.

Our analytical framework considers a downlink system with a large number of base-station antennas (along the lines of the framework studied in [21]). In this framework, our focus is not on systems that are specified by current standards, e.g., WiMax and Long-Term Evolution (LTE), that use only two to four antennas. Instead, our focus is on possible future generations of wireless systems where an antenna array with 100 or more antennas at the base stations is an attractive approach. Preliminary feasibility studies show that, for 120 antennas, we need a space that is occupied by a 1-m-diameter 1-m-high cylinder with a half-wavelength circumferential spacing of 40 antennas in each of the three rings, with each ring vertically spaced two wavelengths apart. With such systems, TDD offers a significant advantage over the FDD operation. In FDD systems, the forward training overhead needed increases with the number of base-station antennas. This overhead also increases the (limited) feedback needed to gain CSI at the base station, which is often neglected when FDD systems are analyzed. In contrast to this condition, in this paper, we account for all channel training overhead incurred in the throughput analysis that we present.

The main contributions of this paper are listed as follows.

- We determine a method of linear precoding and user selection that maximize the net throughput for realistic TDD systems. That is, channel estimation and the consequent errors are taken into account.
- Our results allow us to optimize the training period in such TDD systems. In other words, we determine the optimal tradeoff between estimating the channel and using the channel.
- We provide achievable schemes and upper bounds on the system throughput for the suggested precoding and user selection schemes. We demonstrate that, in typical scenarios, these bounds are close and therefore allow us to accurately estimate the sum rate of the suggested schemes. The bounds also show that the developed schemes give significant improvement over other schemes in the literature (in particular, the approach in [21]).

Note that we do not limit our study only to systems with a large number of base-station antennas. We focus on such systems in the first part of this paper and develop a simple precoder optimization that takes advantage of a large number of base-station antennas. However, the design is applicable to systems with a limited number of base-station antennas. In the second part of this paper, we study a modified version of the precoder presented in [22], which does not assume a large number of base-station antennas, even for the design. In [22], a precoding matrix for downlink systems is obtained using an iterative algorithm that attempts to determine one of the local maxima of the sum rate maximization problem when CSI is available at the base station and the users. Because, in our setting, the base station obtains CSI through training and may thus not be perfect, we modify this algorithm to account for error in the estimation.

A. Prior Work

As is already well known, DPC [23] can be used as a precoding strategy when the interference signal is noncausally and perfectly known at the transmitter. Given that translating DPC in practice is, by no means, a trivial task, various alternative precoding methods with low complexity have been studied, assuming perfect CSI. Prior work on precoding [22], [24]–[27] demonstrates that sum rates close to the sum capacity can be achieved with lower computational complexity compared to DPC. There are also opportunistic scheduling schemes [28] with lower complexity compared to DPC, which can achieve the sum rate that asymptotically identically scales as the sum capacity with the number of users. The existing literature on scheduling [29], [30] shows the significance of opportunistic scheduling toward maximizing the sum rate in the downlink.

As aforementioned, in FDD systems, a limited-CSI setting has been studied in great detail by primarily using a limited-feedback framework [15]–[19], [31], [32]. In this framework, perfect CSI is assumed at the users, and limited-feedback to the base station is studied. In [17], the authors show that, at high SNR, the feedback rate that is required per user must linearly grow with the SNR (in decibels) to obtain the full MIMO BC multiplexing gain. The main result in [18] is that CSI feedback can significantly be reduced by exploiting multiuser diversity. In [19], the authors design a joint CSI quantization, beamforming, and scheduling algorithm to attain optimal throughput scaling. However, all these papers assume perfect channel knowledge at the users and do not study TDD systems. The effect of training in multiuser MIMO systems using the TDD operation is studied in [21]. The authors limit the study to homogeneous users and zero-forcing (ZF) precoding. This paper is motivated from and builds on this work on TDD systems.

B. Notation

We use boldface letters to denote vectors and matrices. All vectors are column vectors. We use $(\cdot)^T$ to denote the transpose, $(\cdot)^*$ to denote the conjugate, and $(\cdot)^\dagger$ to denote the Hermitian of vectors and matrices. $\text{Tr}(A)$ denotes the trace of matrix A, and A^{-1} denotes the inverse of matrix A. $\text{diag}(\mathbf{a})$ denotes a diagonal matrix with diagonal entries equal to the components of \mathbf{a}. \succeq denotes element-wise greater than or equal to. $\mathbb{E}[\cdot]$ and $\text{var}\{\cdot\}$ stand for the expectation and variance operations, respectively. $1_{\{\cdot\}}$ denotes the indicator function.

C. Organization

The rest of this paper is organized as follows. In Section II, we describe the system model and the assumptions. We consider two transmission methods. First, we consider a transmission method with channel training on only the reverse link in Section III. Next, we consider a transmission method that sends forward pilots in addition to reverse pilots in Section IV.
In Section V, we provide an upper bound on the sum rate for communication schemes using linear precoding at the base station. We compare the performance of the various schemes considered through numerical results in Section VI and provide our concluding remarks in Section VII.

II. SYSTEM MODEL

The system model consists of a base station with M antennas and K single-antenna users. The base station communicates with the users on both forward and reverse links, as shown in Fig. 1. The forward channel is characterized by the $K \times M$ matrix H and the forward SNRs. The system model incorporates the frequency selectivity of fading by using orthogonal frequency-division multiplexing (OFDM). The duration of the coherence interval (which will be defined later) in symbols is chosen for one OFDM subband. For simplicity, we consider OFDM subbands as parallel channels and concentrate on one OFDM subband (where the channel matrix is fixed, and there is no multipath). Details of OFDM (including the cyclic prefix) are completely omitted, because this topic is not the focus of this paper. Furthermore, we make the following assumptions.

1) Rayleigh block fading. The channel undergoes Rayleigh fading over blocks of T symbols called the coherence interval, during which, the channel remains constant. In Rayleigh fading, the entries of the channel matrix H are independent and identically distributed (i.i.d.) zero-mean circularly symmetric complex Gaussian $\mathcal{CN}(0,1)$ random variables.

2) Reciprocity. The reverse channel between any user and the base station (at any instant) is a scaled version of the forward channel.

3) Coherent uplink transmission. Time synchronization is present in the system.

Let the forward and reverse SNRs associated with the kth user be ρ^f_k and ρ^r_k, respectively. These forward and reverse SNRs account for the average power at the base station and the users and the propagation factors (including path loss and shadowing). These propagation factors change at a much larger time scale compared to fading. Hence, in the analysis, these parameters are treated as constants. For simplicity of notation, we ignore the time index. On the forward link, the signal that is received by the kth user is

$$x^f_k = \sqrt{\rho^f_k} h^T_k s^f + z^f_k$$

where h^T_k is the kth row of the channel matrix, H and s^f is the $M \times 1$ signal vector. The additive noise z^f_k is i.i.d. $\mathcal{CN}(0,1)$. The average power constraint at the base station during transmission is $\mathbb{E}[\|s^f\|^2] = 1$ so that the total transmit power is fixed, irrespective of its number of antennas. The received power depends on the channel norm and, hence, on the number of antennas at the base station. On the reverse link, the vector that is received at the base station is

$$x^r = H^T E^r s^r + z^r$$

where s^r is the signal vector that was transmitted by the users, and

$$E^r = \text{diag} \left\{ \sqrt{\rho^r_1}, \sqrt{\rho^r_2}, \ldots, \sqrt{\rho^r_K} \right\}.$$

The components of the additive noise vector z^r are i.i.d. $\mathcal{CN}(0,1)$. The power constraint at the kth user during transmission is given by $\mathbb{E}[\|s^r_k\|^2] = 1$, where s^r_k is the kth component of s^r.

Remark 1: We primarily focus on short coherence intervals. The need to study short coherence intervals arises from the high mobility of the users. In this setting, it is important that we account for the channel training overhead and estimation error. Our goal is to account for these factors in the net throughput and develop schemes that achieve high net throughput. To obtain schemes of practical importance, we look at schemes with low computational requirements. As aforementioned, we consider linear precoding techniques at the base station.

Remark 2: The performance metric of interest is the achievable weighted-sum rate. The motivation behind looking at the weighted-sum rate is that weights are used by higher layer protocols such as the proportional fair scheduling algorithm and the max-weight scheduling algorithm to achieve goals such as the efficient fair sharing of throughput (proportional fair) and queue stabilization (max weight). For example, in the case of max weight, weights are fixed to be queue lengths [33]. The weights are passed to the physical layer, which maximizes the weighted-sum rate with given weights. It is this latter task and the performance achieved with which the paper is concerned. Thus, in a real system, these weights are adaptively controlled by the high-layer algorithm to perform a given network utility maximization [34].

By assumption, every user knows the system parameters, e.g., the weights, the forward SNRs, the reverse SNRs, and the achievable strategy. In typical systems, these parameters change.
on a much larger time scale compared with the coherence interval and stays constant during several OFDM symbols. Typical shadow-fading assumptions lead to the conclusion that significant SNR changes occur only over distance of 20 m and above. Furthermore, in communications standards such as LTE, there are protocols that describe how SNRs are estimated and passed to base stations. We do not address these issues in this paper, i.e., in our system model, SNRs are assumed to be constant and known for the time scale of interest. The symbol time of the LTE OFDM symbol is 71.3 μs. If a mobile moves with the speed of 50 mi/h, then its SNR value will change after the transmission of approximately 12 600 OFDM symbols, whereas the channel coefficients will change within approximately 20 OFDM symbols. In a typical proportional fair algorithm, weights are kept fixed over a period of 1–10 s. Hence, the number of OFDM symbols that will be transmitted in this time interval is, again, much larger than the coherence interval. These typical numbers clearly suggest that the overhead associated with learning system parameters is negligible compared to the channel training overhead, which is accounted for in this paper.

III. Training on the Reverse Link Only

In this section, we consider a transmission scheme that consists of the following three phases, as shown in Fig. 2: 1) training; 2) computation; and 3) data transmission. In the training phase, the users transmit training sequences to the base station on the reverse link. The base station performs the required computations for precoding in the computation phase. We assume that this approach causes a one-symbol delay to emphasize the delay in computation/control. In practice, this delay is a system-dependent parameter. In the data transmission phase, the base station transmits data symbols to the selected users.

Remark 3: In this transmission method, the users do not obtain any information with regard to the instantaneous channel. The base station obtains an estimate of the instantaneous channel. This setup is very different from the usual setting, where the users also have estimates of channel gains. As a result, the analysis is also very different.

Our goal is to obtain a simple precoding method that can achieve a high weighted-sum rate. The capacity region of the system described in Section II is not known, even in the single-user setting. In addition, capacity-achieving schemes can, in general, be very complex to implement in practice. Therefore, our approach is to obtain variants of well-studied simple algorithms in the perfect CSI setting that are applicable in the imperfect CSI setting and analyze the system performance. In particular, we consider minimum mean-square error (MMSE) channel estimation, opportunistic selection of users based on channel gains, and generalized ZF (which will be described later) precoding. The parameters used in the algorithm are optimized for improved performance. The optimal precoding is identified in the course of an asymptotic analysis, taking the number of base-station antennas to infinity. Next, we provide the details of the algorithm and our analysis.

A. Channel Estimation

Channel reciprocity is one of the key advantages of TDD systems over FDD systems. We exploit this property to perform channel estimation by transmitting training sequences on the reverse link. Every user transmits a sequence of training signals of \(\tau^r \) symbols duration in every coherence interval. The \(k \)-th user transmits the training sequence vector \(\sqrt{\tau^r} \psi^i_k \). We use orthonormal sequences, which implies that \(\psi^i_k \psi^j_k = \delta_{ij} \), where \(\delta_{ij} \) is the Kronecker delta.

Remark 4: The use of orthogonal sequences restricts the maximum number of users to \(\tau^r \), i.e., \(K \leq \tau^r \).

The training signal matrix that is received at the base station is

\[
Y = \sqrt{\tau^r} H^T \Psi^\dagger T + V^r
\]

where \(\Psi = [\psi_1 \psi_2 \cdots \psi_K] \) (\(\Psi^\dagger T = I \)), and the components of \(V^r \) are i.i.d. \(\mathcal{CN}(0, 1) \). The base station obtains the linear minimum mean-square error (LMMSE) estimate of the channel as

\[
\hat{H} = \text{diag} \left\{ \frac{\sqrt{\rho_1^r \tau^r}}{1 + \rho_1^r \tau^r}, \ldots, \frac{\sqrt{\rho_K^r \tau^r}}{1 + \rho_K^r \tau^r} \right\} \Psi^\dagger T Y^T. \tag{3}
\]

The estimate \(\hat{H} \) is the conditional mean of \(H \), given \(Y \). Therefore, \(\hat{H} \) is also the MMSE estimate. By the properties of conditional mean and joint Gaussian distribution, the estimate \(\hat{H} \) is independent of the estimation error \(\hat{H} = H - \hat{H} \) [35]. The components of \(\hat{H} \) are independent, and the elements of its \(k \)-th row are \(\mathcal{CN}(0, \rho_k^r \tau^r/(1 + \rho_k^r \tau^r)) \). In addition, the components of \(\hat{H} \) are independent, and the elements of its \(k \)-th row are \(\mathcal{CN}(0, 1/(1 + \rho_k^r \tau^r)) \).

B. Generalized ZF Precoding

Next, we describe a generalized ZF precoding. This precoding consists of the following two steps: 1) precoder parameter optimization and 2) user selection. The precoder parameters are nonnegative constants \(p_1, \ldots, p_K \), which will be optimized later over long-term\(^1\) system parameters, e.g., the weights, the forward SNRs, and the reverse SNRs. The user selection algorithm is denoted by \(S(H) = \{S_1, S_2, \ldots, S_N\} \subseteq \{1, 2, \ldots, K\} \), i.e., based on the channel estimate \(\hat{H} \), the

\(^1\)Strictly speaking, these long-term parameters are constants in our system model.
scheduling algorithm selects users S_1, S_2, \ldots, S_N. Thus, the user selection is dependent on short-term channel variations.

Before proceeding, we introduce the notation required to describe the precoding method. Let

$$D_S = \text{diag} \left\{ \left[\begin{array}{cccc} \frac{1}{p_s^1} & \frac{1}{p_s^2} & \ldots & \frac{1}{p_s^N} \end{array} \right]^T \right\}.$$

Let \hat{H}_S be the $N \times M$ matrix formed from \hat{H} as follows. The ith row ($1 \leq i \leq N$) corresponds to the S_ith row of matrix H. Similarly, define H_S and \hat{H}_S. Let $H_{DS} = D_S \hat{H}_S$. Now, the generalized ZF precoding matrix is defined as

$$A_{DS} = \frac{\hat{H}_{DS} (\hat{H}_{DS} \hat{H}_{DS}^H)^{-1}}{\text{Tr} \left[(\hat{H}_{DS} \hat{H}_{DS}^H)^{-1} \right]}.$$

(4)

This precoding matrix is normalized so that

$$\text{Tr} \left(A_{DS}^T A_{DS} \right) = 1.$$

The matrix D_S is introduced to optimally allocate “resources” to users. This approach is required, because our system consists of heterogeneous users.

Let q denote the vector of (coded) information symbols that have to be transmitted to the N selected users. Then, the transmission signal vector is given by

$$s_f = A_{DS} q.$$

(5)

Clearly, the base-station transmit power constraint can be satisfied, irrespective of the values of p_1, \ldots, p_K, by imposing the conditions $E[\|q_n\|^2] = 1, \forall n \in \{1, \ldots, N\}$.

This generalized ZF precoding method requires a choice of the p_i values and a user selection algorithm. Next, we characterize the achievable throughput with this precoding method and then explain the precoder optimization and the user selection algorithm.

C. Achievable Throughput

In this section, we obtain an achievable throughput for the system under consideration (by building on the techniques in [36]). Given a user selection algorithm, we denote the probability of selecting the kth user as γ_k. The throughput that was derived depends on the user selection strategy through the random variable χ (which will be defined later) and the probabilities of selecting the users. Recall that M is the number of antennas at the base station, K is the number of users, ρ_k is the forward SNR associated with the kth user, and ρ_k^r is the reverse SNR associated with the kth user. Let the weight associated with the kth user be w_k. The base station performs MMSE channel estimation, as described in Section III-A. For channel estimation, the training period used is $\tau^r \geq K$ symbols.

Based on (1), the signal vector that is received at the selected users (according to our system model, the user knows whether it is selected) is

$$x_f^l = E_S^l H_S A_{DS} q + z_f^l$$

(6)

where

$$E_S^l = \text{diag} \left\{ \left[\sqrt{\rho_{S_1}} \sqrt{\rho_{S_2}} \ldots \sqrt{\rho_{S_N}} \right]^T \right\}.$$

The effective forward channel in (6) is

$$G = E_S^l H_S A_{DS}$$

$$= E_S^l (D_S^{-1} \hat{H}_{DS} + \hat{H}_S) A_{DS}$$

$$= E_S^l D_S^{-1} \chi + E_S^l \hat{H}_S A_{DS}$$

(7)

where χ is the scalar random variable given by

$$\chi = \left(\text{tr} \left[(\hat{H}_{DS} \hat{H}_{DS}^H)^{-1} \right] \right)^{-\frac{1}{2}}.$$

(8)

Suppose that the kth user is among the selected users. The signal that is received by the kth user is

$$x_k^f = g^T q + z_k^f$$

(9)

where g^T is the row that corresponds to the kth user in matrix G. Based on (7), we obtain

$$g^T = \sqrt{\rho_k^r} \hat{h}_k^T e_k + \sqrt{\rho_k} \hat{h}_k^T A_{DS}$$

(10)

where \hat{h}_k^T is the kth row of \hat{H}, and e_k is the $N \times 1$ column vector, where the kth element is equal to one, and all other elements are equal to zero. Substituting (10) in (9) and adding and subtracting the mean from χ, we obtain

$$x_k^f = \sqrt{\rho_k^r} \rho_k \mathbb{E}[\chi] q_k + \sqrt{\rho_k^r} \rho_k (\chi - \mathbb{E}[\chi]) q_k$$

$$+ \sqrt{\rho_k^r} \hat{h}_k^T A_{DS} q + z_k^f$$

$$= \sqrt{\rho_k^r} \rho_k \mathbb{E}[\chi] q_k + \hat{z}_k^f$$

(11)

where the effective noise

$$\hat{z}_k^f = \sqrt{\rho_k^r} \rho_k (\chi - \mathbb{E}[\chi]) q_k + \sqrt{\rho_k^r} \hat{h}_k^T A_{DS} q + z_k^f.$$

According to our system model, each user knows the systems parameters. However, the users do not know the instantaneous channels, which is the main overhead that is often neglected. Hence, the user performs the following steps.

1. It computes the expected value (over instantaneous channel distribution) of its “effective” channel given by $(\rho_k^r \rho_k)^{1/2} \mathbb{E}[\chi]$. In other words, this value is the expected gain that multiplies its information symbol.

2. It computes the variation of the effective channel around its expected value given by $\rho_k^r \rho_k \text{var} \{\chi\}$. This approach contributes to the “effective” noise variance.

3. It computes the remaining terms that contribute to effective noise variance, which includes the interference due to other information signals given by $\rho_k^r / (1 + \rho_k^r \tau^r)$ and the additive noise variance (which is unity).

4. It computes the effective SNR from the aforementioned computations and uses it in the decoding.
In the following theorem, we formalize the aforementioned method by showing that the effective noise is uncorrelated with the signal and use this fact to obtain achievable the weighted-sum rate.

Theorem 1: Consider the aforementioned precoding method. Then, the following weighted-sum rate is achievable during downlink transmission:

\[
R_{\Sigma} = \sum_{k=1}^{K} \gamma_k w_k \log_2 \left(1 + \frac{\rho_k^2 p_k \mathbb{E}[\chi]}{1 + \rho_k^f \frac{1}{1 + \rho_k^r} + p_k \text{var}[\chi]} \right)
\]

where \(\chi \) is the scalar random variable in (8).

Proof: The expected value of any term on the right-hand side of (11) is zero. The noise term \(z_k^f \) is independent of all other terms, and

\[
\mathbb{E}[z_k^f | q] = 0, \quad \mathbb{E}[z_k^f | q, \hat{H}] = 0, \quad \mathbb{E}[\hat{h}_k^T | q, \hat{H}] = 0.
\]

Using the law of iterated expectations, we have

\[
\mathbb{E}[q_k q_k^\dagger (\chi - \mathbb{E}[\chi])] = \mathbb{E}[q_k q_k^\dagger (\mathbb{E}[\chi] - \mathbb{E}[\chi])] = 0
\]

\[
\mathbb{E}[q_k q_k^\dagger A_{DS} h_k^\dagger] = \mathbb{E}[q_k q_k^\dagger A_{DS} \mathbb{E}[h_k^\dagger | q, \hat{H}]] = 0
\]

\[
\mathbb{E}[(\chi - \mathbb{E}[\chi]) q_k q_k^\dagger A_{DS} h_k^\dagger] = \mathbb{E}[(\chi - \mathbb{E}[\chi]) q_k q_k^\dagger A_{DS} \mathbb{E}[h_k^\dagger | q, \hat{H}]] = 0.
\]

Hence, any two terms on the right-hand side of (11) are uncorrelated. The effective noise \(z_k^f \) is thus uncorrelated with the signal \(q_k \). The effective noise has zero mean and variance, i.e.,

\[
\text{var}\left\{ z_k^f \right\} = 1 + \rho_k^f \mathbb{E}[\hat{h}_k^T A_{DS} q_k] + \rho_k^f p_k \text{var}[\chi] = 1 + \rho_k^f \left(\frac{1}{1 + \rho_k^r} + p_k \text{var}[\chi] \right).
\]

Remark 5: The effective noise \(z_k^f \) is uncorrelated with the signal \(q_k \) and, in general, not independent. Note that we do not need independence in the proof.

To obtain a set of achievable rates, we consider \((T - \tau^r - 1)\) parallel channels, where noise is independent over time, because fading is independent over blocks. Using the fact that worst case uncorrelated noise distribution is independent Gaussian noise with the same variance, we obtain the achievable weighted-sum rate given in (12). This case completes the proof.

The proof assumes that the users know whether they are selected. In Section III-E, we discuss how this assumption can be relaxed with a small reduction in the net achievable rate.

Remark 6: The values \(\mathbb{E}[\chi] \) and \(\text{var}[\chi] \) do not depend on short-term channel variations. \(\mathbb{E}[\chi] \) and \(\text{var}[\chi] \) depend only on slowly changing parameters, i.e., on the weights, the reverse SNRs, and the user selection strategy. These slowly changing parameters stay constant over a large period that comprises several coherence intervals. We assume that these parameters are known at the base station and the corresponding users. The values \(\mathbb{E}[\chi] \) and \(\text{var}[\chi] \) can accurately be estimated through a Monte Carlo simulation at the beginning of each period. These estimates can be produced either by the users themselves or by the base stations. In the latter case, the base station will have to pass the values \(\mathbb{E}[\chi] \) and \(\text{var}[\chi] \) to the corresponding users, which would assume only a small overhead. Alternatively, we can generate a lookup table for \(\mathbb{E}[\chi] \) and \(\text{var}[\chi] \) for a grid of parameter values. For intermediate cases, the corresponding values can be found by interpolation.

D. Optimization of the Precoding Matrix

We have introduced the parameters \(p_1, \ldots, p_K \) in the generalized ZF precoding to handle the heterogeneity of users, i.e., differences in the weights, the forward SNRs, and the reverse SNRs associated with the users. In this section, our goal is to obtain these parameters as a function of the weights, the forward SNRs, and the reverse SNRs. We make the following simplifications to achieve our goal.

1) The performance metric of interest is the achievable weighted-sum rate \(R_{\Sigma} \) in (12). However, \(R_{\Sigma} \) is a function of the user selection algorithm. To overcome this limitation, we simply consider the case of selecting all users to obtain \(p_1, \ldots, p_K \). Hence, this approach can be performed before the user selection.

2) We would like to choose nonnegative values for \(p_1, \ldots, p_K \) such that \(R_{\Sigma} \) in (12) is maximized. However, this problem is hard to analyze, because a closed-form expression for the expectation and the variance terms in (12) is unknown. We consider the asymptotic regime \(M/K \to \infty \), because this expression is appropriate in this section.

Remark 7: Aside from making the problem mathematically tractable, the asymptotic regime \(M/K \to \infty \) is of interest due to the following two reasons: 1) The system constraints \(K \leq \tau^r, \tau^r \leq T \) place an upper bound on \(K \), independent of the number of antennas, and 2) the base station can be equipped with several antennas, each powered by its own low-power tower-top amplifier [21].

Based on the weak law of large numbers, it is known that

\[
\lim_{M/K \to \infty} \frac{1}{M} \mathbb{E}[\mathbf{Z}] = \mathbb{E}[\mathbf{Z}]
\]

where \(\mathbf{Z} \) is the \(K \times M \) random matrix whose elements are i.i.d. \(\mathcal{CN}(0, 1) \). Therefore, \(\mathbb{E}[\mathbf{Z}] \) can be approximated by \(M \mathbf{1}_K \). Hence, the random variable \(\chi \) in (8) can be approximated as

\[
\chi \approx \sqrt{\frac{M}{K \sum_{j=1}^{K} a_j \rho_j}}
\]

where

\[
a_j = \left(\frac{\rho_j^r \tau^r}{1 + \rho_j^r \tau^r} \right)^{-1}.
\]
Substituting (13) into (12), we get
\[R_{\Sigma} \approx J(p) = \sum_{i=1}^{K} w_i \log_2 \left(1 + \frac{b_i p_i}{\sum_{j=1}^{K} a_j p_j} \right) \]
where
\[b_i = \frac{M \rho_i^i}{1 + \rho_i^i (1 + \rho_r^r)}^{-1}. \]

Under this approximation, we can find the optimal values for \(p_1, \ldots, p_K \) that maximize \(J(p) \) as described in the following discussion.

Theorem 2: One optimal solution \(p^* \) of the objective function \(\max_p J(p) \) is of the form \(c p^* \), where \(c \) is any positive real number, and \(p^* = [p_1^*, \ p_2^*, \ \ldots, \ p_K^*]^T \) is given by
\[p_i^* = \max \left\{ 0, \left(\frac{w_i}{\nu^* a_i} - \frac{1}{b_i} \right) \right\}. \quad (14) \]
The positive real number \(\nu^* \) is unique and given by
\[\sum_{i=1}^{K} a_i p_i^* = 1. \]

Proof: The proof idea is to introduce one additional constraint to obtain a convex optimization problem. We show that the introduction of the additional constraint does not affect the optimal value of the optimization problem.

Note that \(w_i > 0, \ b_i > 0, \) and \(a_i > 0. \) Let \(a = [a_1, \ a_2, \ \ldots, \ a_K]^T. \) We consider the following optimization problem:
\[
\begin{align*}
\text{maximize} & \quad J(p) \\
\text{subject to} & \quad p \geq 0.
\end{align*}
\]
Because \(J(p) = J(cp) \) for any \(c > 0 \) and \(p^* \neq 0, \) \(p^* \) such that \(a^T p^* = c \) is an optimal solution to \((15)\) if and only if \(p^* = (1/c)p^* \) is an optimal solution to the convex optimization problem, i.e.,
\[
\begin{align*}
\text{minimize} & \quad - \sum_{i=1}^{K} w_i \log(1 + b_i p_i) \\
\text{subject to} & \quad p \geq 0, \ a^T p = 1.
\end{align*}
\]
To solve \((16)\), we introduce Lagrange multipliers \(\lambda \in \mathbb{R}^K \) for the inequality constraints \(p \geq 0 \) and \(\nu \in \mathbb{R} \) for the equality constraint \(a^T p = 1. \) The necessary and sufficient conditions for optimality are given by the Karush–Kuhn–Tucker (KKT) conditions [37]. These conditions are
\[
\begin{align*}
p_i^* & \geq 0, \quad a^T p^* = 1, \quad \lambda^* \geq 0 \\
\lambda_i^* p_i^* & = 0, \quad -\frac{w_i b_i}{1 + b_i p_i^*} - \lambda_i^* \nu^* a_i = 0, \quad i = 1, \ldots, K.
\end{align*}
\]
This set of equations can be simplified to
\[
\begin{align*}
p_i^* & = \max \left\{ 0, \left(\frac{w_i}{\nu^* a_i} - \frac{1}{b_i} \right) \right\} \\
\sum_{i=1}^{K} a_i \max \left\{ 0, \left(\frac{w_i}{\nu^* a_i} - \frac{1}{b_i} \right) \right\} & = 1. \quad (17)
\end{align*}
\]
Because the left-hand side of \((17)\) is an increasing function in \(1/\nu^* \), this equation has a unique solution, which can easily be numerically computed using binary search. This case completes the proof.

The optimized \(p^* \) given by \((14)\) is substituted in \((4)\) to obtain the optimized precoding matrix. Note that this precoder design is only asymptotically optimal when \(M/K \rightarrow \infty. \) However, we use this optimized precoding matrix, although the number of users \(K \) is comparable to the number of base-station antennas \(M. \)

Denote the scheme where we use optimized \(p_i \) values for precoding by scheme 1 and the scheme where we use \(p_i = 1 \) for precoding by scheme 0. In both schemes, we select all the users.

E. User Selection Strategy

We consider a simple user selection strategy based on the opportunistic selection of users based on the scaled estimated channel gains of users (details will be given later). We ignore the spatial separability/orthogonality of channels due to the following reason. As aforementioned, the transmission method in this section is of interest in the large number of base-station antennas setting. In this setting, the spatial separability/orthogonality of channel plays a less important role. In addition, the channel estimate at the base station is expected to be poor. The prediction of channel orthogonality based on this poor estimate is generally inaccurate. In addition, brute-force search over subsets of users is computationally complex. In the second part of this paper, for the general setting, we consider schemes that use the spatial separability/orthogonality of channels.

In the user selection strategies presented as follows, we need not assume any designated channel for informing users whether they were selected. We will show that this approach does not result in a significant loss of data rate.

Let us consider a selection scheme with a designated channel for alerting the selected users. Let \(I_j \) be the average amount of information (in bits) that can be transmitted to the \(j \)th user during one coherence interval in this scheme. The averaging is conducted over multiple coherence intervals, in which the user can be selected or not. Denote by \(I_j' \) the corresponding quantity for the same user selection scheme but without the designated channel.

Theorem 3: We have
\[I_j' \geq I_j - 1. \]

Proof: Let \(D_j \) be the random variable that indicates whether the \(j \)th user was selected in a given coherence interval. The value \(D_j = 1 \) indicates that the user was selected, and \(D_j = 0 \) indicates that it was not selected. Let \(A_{D_1, \ldots, D_K} \) be a precoding matrix. This matrix depends on the values \(D_1, \ldots, D_K. \) In particular, the \(j \)th column of \(A_{D_1, \ldots, D_K} \) is
the all-zero vector if \(D_j = 0 \). Denote by \(q^t_j \) the symbol that is transmitted to the \(j \)th user at time instance \(t \). Then, the signal that is received by the \(j \)th user is

\[
x_j^t = \sqrt{\rho_j} h_j^T A_{D_1, \ldots, D_K} \begin{pmatrix} q_1^t \\ \vdots \\ q_K^t \end{pmatrix} + z_k^t
\]

(18)

where \(z_k^t \) is the Gaussian noise. Denote \(x_j = (x_j^\tau+1, \ldots, x_j^T)^T \) and \(q_j = (q_j^\tau+1, \ldots, q_j^T)^T \). If the designated channel is available, we have

\[
I_j = I(x_j; q_j, D_j).
\]

Note that this mutual information is over the communication channel defined by (18), which includes not only the MIMO transmission but also the random variables \(D_j \). In addition, note that \(D_j \) and \(q_j \) are independent. Similarly, if the designated channel is absent, we have

\[
I_j' = I(x_j; q_j).
\]

Using the chain rule for mutual information, we obtain

\[
I_j = I(x_j; q_j) + I(x_j; D_j|q_j) = I_j' + I(x_j; D_j|q_j).
\]

Because \(D_j \) is a binary random variable, we have

\[
I(x_j; D_j|q_j) \leq 1
\]

and the assertion follows.

Note that, by applying the chain rule, we obtain

\[
I_j = I(q_j; D_j) + I(x_j; q_j) = I(q_j; D_j) = I_{\text{MIMO}}(x_j; q_j) \Pr(D_j = 1).
\]

(19)

These equalities follow from the fact that \(q_j \) and \(D_j \) are independent random variables and from the fact that \(I(x_j; q_j) \Pr(D_j = 0) = 0 \). In (19), the mutual information \(I_{\text{MIMO}}(x_j; q_j) \) is over the channel defined in (9), i.e., over the MIMO (the dimensions are time and not antennas) channel for selected users, which is different from the channel (18).

Another important concern is the practical realization of the user selection scheme. One possible way is to design a criterion that will allow each user to decide whether it was selected for each coherence interval. For instance, we can try to use the power of the received signal \(x_j \) as such a criterion. We believe that this approach is poor, which incorporates a hard decision, which results in rate loss.

A significantly better way is to assume the channel model (18), in which we always “transmit” signals \(q_j \), to be independent of whether the \(j \)th user was selected. This equivalent is valid to data transmission through a fading channel of the form \(x_j = \text{const} \cdot q_j D_j + \text{noise} \). To recover the transmitted symbols, we propose to use an error-correcting code, which approaches the capacity of this fading channel. In contrast to the previous hard-decision approach, the probabilities \(\Pr(D_j = 0|x_j), \Pr(D_j = 1, q_j|x_j) \) for all possible values of \(q_j \) and passed to the decoder. It is not difficult to construct a low-density parity-check (LDPC) code approaching capacity of this fading channel, using, e.g., the EXIT function technique described in [38] and [39]. A decoder of such an LDPC code will update the probabilities \(\Pr(D_j = 0|x_j), \Pr(D_j = 1, q_j|x_j) \) using intermediate decoding results from each iteration (see [39] for details of this technique).

1) Homogeneous Users: First, we consider the special case where the users are statistically identical. In this homogeneous setting, the forward SNRs from the base station to all the users are equal (given by \(\rho_j^f \)), and the reverse SNRs from all the users to the base station are equal (given by \(\rho^r \)). Furthermore, the weights that are assigned to all the users are unity, i.e., \(w_k = 1 \). The need for explicit user selection arises due to the ZF-based precoding used. With perfect channel knowledge at the base station (\(\hat{H} = \tilde{H} \)) and no user selection (\(N = K \)), the ZF precoding diagonalizes the effective forward channel, and all users see the same effective channel gains.

We use the following simple heuristic rule at the base station. In every coherence interval, the base station selects the \(N \) users with the largest estimated channel gains. This rule is motivated by the expectation term \(\mathbb{E}[\chi] \) that appears in the achievable weighted-sum rate in (12). Let \(\hat{h}_{(1)}^T, \hat{h}_{(2)}^T, \ldots, \hat{h}_{(K)}^T \) be the norm-ordered rows of the estimated channel matrix \(\tilde{H} \). Then, the matrix \(\tilde{H}_S \) is given by \(\tilde{H}_S = [\hat{h}_{(1)} \ \hat{h}_{(2)} \ \cdots \ \hat{h}_{(N)}]^T \), and the achievable sum rate in (12) becomes

\[
R_S = N \log_2 \left(1 + \frac{\rho^f \left(\frac{\rho^f \tau^r}{1+\rho^r} \right) \mathbb{E}^2[\eta]}{1 + \rho^f \left(\frac{\rho^f \tau^r}{1+\rho^r} + \frac{\rho^f \tau^r}{1+\rho^r} \text{var}[\eta] \right)} \right).
\]

(20)

Here, the random variable

\[
\eta = (\text{Tr} \left([\hat{U}^U]^U \right))^{-\frac{1}{2}}
\]

where \(U \) is the \(N \times M \) matrix formed by the \(N \) rows with the largest norms of a \(K \times M \) random matrix \(Z \) whose elements are i.i.d. \(\mathcal{CN}(0, 1) \).

The net achievable sum rate accounts for the reduction in the achievable sum rate due to training. In every coherence interval of \(T \) symbols, the first \(\tau^r \) symbols are used for training on the reverse link, a symbol is used for computation, and the remaining \((T - \tau^r - 1) \) symbols are used for transmitting information symbols, as shown in Fig. 2. The training length \(\tau^r \) can be chosen such that the net throughput of the system is maximized. For \(N < K \), the sum rate overhead associated with user selection would be \(K/T \). Thus, the net achievable sum rate is defined as

\[
R_{net} = \max_{\tau^r, N} \left(\frac{T}{T} - \frac{1}{T} R_S - 1_{(N<K)} \frac{\sum_{i=1}^{K} w_i}{T} \right)
\]

(21)

subject to \(N \leq K, \ \tau^r \leq T - 1, \) and \(\tau^r \geq K \). In (21), we optimize over both \(N \) and \(\tau^r \).

2) Heterogeneous Users: In this section, we consider the following heuristic user selection strategy for heterogeneous users.
Let $z_1^T, z_2^T, \ldots, z_K^T$ be the rows of the matrix

$$
Z = \text{diag} \left\{ \left[\frac{1 + \rho_1^r \tau^r}{\rho_1^r \tau^r}, \ldots, \frac{1 + \rho_K^r \tau^r}{\rho_K^r \tau^r} \right]^T \right\} \bar{H}
$$

where \bar{H} is the estimated channel given by (3). Note that Z is normalized such that the entries are i.i.d. In every coherence interval, the users are ordered such that

$$
\mathcal{P}_1(1) \left\| z_{(1)}^T \right\|^2 \geq \mathcal{P}_1(2) \left\| z_{(2)}^T \right\|^2 \geq \cdots \geq \mathcal{P}_1(k) \left\| z_{(k)}^T \right\|^2
$$

and the first N users under this ordering are selected. The value N_{opt} is used for N that maximize the net achievable weighted-sum rate defined as follows. The intuition behind this strategy is that $\mathcal{P}_1(k)$ is nearly proportional to the average power assigned to the kth user and $\left\| z_{(k)}^T \right\|^2$ captures the instantaneous variation in power. Similar to the homogeneous case, the net achievable weighted-sum rate is given by (21). We denote the scheme where we use this user selection strategy along with optimized p_i values for precoding by scheme 2. We provide numerical results that show the improvement obtained by using this strategy in Section VI.

F. Optimal Training Length

We consider the problem of finding the optimal training length in the homogeneous setting when the user selection strategy given in Section III-E is used. The objective is to maximize the net achievable sum rate given by (21). For given values of M, K, T, ρ^l, and ρ^r, it seems intractable to obtain a closed-form expression for the optimal training length. Therefore, we look at the limiting cases $\rho^r \to 0$ and $\rho^r \to \infty$ to understand the behavior of the optimal training length with a reverse SNR.

In the limit $\rho^r \to 0$, we can approximate the net rate as

$$
R_{net} \approx \frac{T - \tau^r - 1}{T} N \log_2 \left(1 + \frac{\rho_f^l \rho^r \tau^r}{1 + \rho^l \mathbb{E}^2[y]} \right).
$$

We use the fact that $\log(1 + x) \approx x$ as $x \to 0$ to obtain the approximation

$$
R_{net} \approx d_1 \frac{T - \tau^r - 1}{T} \tau^r
$$

where d_1 is a positive constant. It is clear that (22) is maximized when $\tau^r = (T - 1)/2$ if we assume that $T > 2K$ and T is odd. In the limit $\rho^r \to \infty$, we can approximate the net rate as

$$
R_{net} \approx d_2 \frac{T - \tau^r - 1}{T}
$$

where d_2 is a positive constant. This expression is maximized by the minimum possible training length, which is $\tau^r = K$.

The approximations suggest that nearly half the coherence time should be spent for training when the reverse SNR is very low and the minimum possible number of symbols (which is K) should be spent for training when the reverse SNR is very high. This conclusion is similar to the result in [36] for MIMO.

In summary, we developed a new precoding method that is referred to as the generalized ZF precoding. It consists of a user selection and an optimization component. The user selection component is performed using opportunistic selection heuristics. The optimization component is performed using a convex optimization problem that results from relevant asymptotics of a large number of base-station antennas. The resulting precoding is simple and therefore has a significant practical value. We demonstrate the improvement obtained in the net throughput through the numerical examples in Section VI.

The net throughput improvement results from all optimization parameters. The role of the training length parameter is clear, because there is tension between the large training overhead and better channel estimation. The more subtle parameters are the number of selected users N and the precoder parameters p_1, \ldots, p_K. The role of the precoder parameters is to take advantage of long-term system parameters and statistics, e.g., the weights, the forward SNRs, and the reverse SNRs, whereas the role of the parameter N is to take advantage of the short-term channel variations. In our approach, because the precoder optimization is dependent on long-term variations, it is not dependent on N. The choice of N would depend on the precoder parameters and is therefore more involved. However, because it is a single parameter, this optimization can be handled.

IV. TRAINING ON THE REVERSE AND FORWARD LINKS

In this section, we consider a transmission method that sends forward pilots in addition to reverse pilots in Section IV.2. In this section, we do not limit our approach to a large number of base-station antennas.

In the transmission method considered in the previous section, the users obtain no knowledge about the instantaneous channel. Every user can be provided with partial knowledge about its effective channel gain in one of the following two ways: 1) The base station can send quantized information of the effective channel gains to the users, or 2) the base station can send forward pilots to the users so that the users can estimate the effective gains. It is hard to account for the overhead when the base station sends quantized information about the effective channel gains. In addition, pilot-based channel training is conventional in wireless systems. Therefore, we focus on sending pilots in the forward link. This approach leads to a transmission method that consists of the following four phases, as shown in Fig. 3: 1) reverse pilots; 2) the computation phase; 3) forward pilots; and 4) data transmission. In this scheme, the users can obtain effective channel gain estimates, at the expense of increased training overhead.

A. Channel Estimation and Precoding

As explained in Section III-A, the users transmit orthogonal training sequences on the reverse link. From these training sequences, the base station obtains the MMSE estimate of the channel. The base station uses this channel estimate \bar{H} to

2There has been some parallel work in [40]. The authors consider two-way training [41] and study two variants of linear MMSE precoders as alternatives to the linear ZF precoder used in [21].
form a precoding matrix to perform linear precoding. Let \(A \) denote any precoding matrix that is a function of the channel estimate, i.e., \(A = f(\hat{H}) \). The precoding function \(f(\cdot) \) usually depends on the system parameters, e.g., forward SNRs, reverse SNRs, and weights assigned to the users. We require that the precoding matrix is normalized so that \(\text{Tr}(A^\dagger A) = 1 \). The transmission signal vector is given by \(s_f = Aq \), where \(q = [q_1, q_2, \cdots, q_K]^T \) is the vector of information symbols for the users. The net achievable rate that will be derived later depends on the system parameters, e.g., forward SNRs, reverse SNRs, and the statistics of the estimation error \(\hat{H} \) is available. In this case, we would like to maximize the value of the average sum rate defined by

\[
R(\hat{H}, A) = \mathbb{E}_H[R(\hat{H} + \hat{H}, A)].
\]

Because the statistics of \(\hat{H} \) is assumed to be known, we can generate \(L \) samples \(\hat{H}^{(i)}, i = 1, \ldots, L \), according to the statistics. Define \(\hat{H}^{(i)} = \hat{H} + \hat{H}^{(i)} \). Then, the average rate can be approximated as

\[
R(\hat{H}, A) \approx \frac{1}{L} \sum_{i=1}^{L} \sum_{j=1}^{M} \log_2 \left(1 + \frac{|h_j^{(i)} a_j|^2}{2\text{Tr}(AA^\dagger) + \sum_{l \neq j} |h_l^{(i)} a_l|^2} \right).
\]

We define \(\Delta^{(i)} \) and \(D^{(i)} \) as in (23) and (24) using the matrix \(\hat{H}^{(i)} \) instead of \(\hat{H} \). Using arguments similar to the arguments used in [22], we obtain that \(\partial R/\partial A_{ij} = 0 \) imply

\[
\sum_{i=1}^{L} \hat{H}^{(i)} \Delta^{(i)} - \hat{H}^{(i)} D^{(i)} \hat{H}^{(i)} - \sigma^2 \text{Tr}(D^{(i)}) A = 0. \quad (26)
\]

Let

\[
V = \sum_{i=1}^{L} \hat{H}^{(i)} D^{(i)} \hat{H}^{(i)} + \sigma^2 \text{Tr}(D^{(i)}) I_M
\]

\[
T = \sum_{i=1}^{L} \hat{H}^{(i)} \Delta^{(i)}.
\]

Based on (26), we have

\[
A = V^{-1} T. \quad (27)
\]

This expression allows us to use the following iterative algorithm for determining \(A \).

1) Assign some initial values to matrices \(\Delta^{(i)} \) and \(D^{(i)} \), e.g., \(\Delta^{(i)} = I_M \), and \(D^{(i)} = I_M \).
2) Compute \(A \) according to (27).
3) Compute \(\Delta^{(i)} \) and \(D^{(i)} \) according to (23) and (24) using \(\hat{H}^{(i)} \) instead of \(\hat{H} \).
4) Repeat steps 2 and 3 several times.

Remark 8: In numerical simulations (including the simulations in Section VI), we have observed that \(L = 50 \) is sufficient. Furthermore, for typical examples, four to eight iterations are enough. Thus, the number of required iterations is small for numerical convergence in most cases. However, similar to [22], there is no theoretical guarantee on the convergence of the algorithm.

Remark 9: The precoding matrix is obtained using numerical techniques. Note that the precoding matrices can be computed offline and implemented using lookup tables. We do not provide the details of this case in this paper. Because the precoding is linear, the online computational complexity is low.

B. Forward Training

The key idea behind sending forward pilots is that users can use these pilots to compute effective channel gains to higher accuracy and reduce the variance of the effective noise. At the same time, we have to spend time sending forward pilots, and *a priori*, it is not clear whether we can obtain any gain from using forward pilots. This condition motivates us to consider variable number of forward pilots, which can be used for
The base station transmits τ_f forward pilots so that every user can obtain an estimate of its effective channel gain. Because we are interested in short coherence intervals, we consider the case with very few forward pilots. Note that τ_f can be less than the number of users K. Thus, we do not restrict to orthogonal pilots in forward training. The forward pilots are obtained by premultiplying the vectors $q^{(1)}_p, \ldots, q^{(\tau_f)}_p$ with the precoding matrix. In the case of one forward pilot ($\tau_f = 1$), we consider the forward pilots obtained from the vector $q^{(1)}_p = [1, 1, \ldots]^T$. In the case of $\tau_f = 2$, we consider the forward pilots obtained from the vectors $q^{(1)}_p = \sqrt{2}[1, 0, 1, 0, \ldots]^T$ and $q^{(2)}_p = \sqrt{2}[0, 1, 0, 1, \ldots]^T$. It is straightforward to extend this case to any number of forward pilots. We denote the vector of forward pilots obtained by the kth user by x^p_k. The kth user uses x^p_k to compute $E[g_{kk}|x^p_k]$, because the variance of $g_{kk} - E[g_{kk}|x^p_k]$ that contributes to the effective noise is smaller than the variance of the corresponding term without forward pilots $g_{kk} - E[g_{kk}]$.

C. Achievable Throughput

We use similar techniques (the proof is more involved) as in the previous section to obtain the net achievable throughput for the transmission method with reverse and forward pilots. Based on (1), the signal vector that was received at the users (all K users) is

$$x^f = E^f H A q + z^f$$

where

$$E^f = \text{diag}\left\{\left[\sqrt{\rho_1} \sqrt{\rho_2} \ldots \sqrt{\rho_K}\right]^T\right\}.$$

We denote the effective forward channel in (28) by $G = E^f H A$ with the (i,j)th entry g_{ij}.

Theorem 4: For the transmission method considered, the following downlink weighted-sum rate is achievable during transmission:

$$R_S = \sum_{k=1}^{K} w_k E\left[C \left(1 + \frac{\sum_{i=1}^{L} E[|g_{kk}|x^p_k|^2]}{1 + \sum_{i=k}\text{var}\left\{g_{kk}|x^p_k\right\}} \right) \right]$$

(29)

where $C(\theta) = \log_2(1 + \theta)$.

Proof: In every coherence interval, the kth user receives the vector x^p_k. In the data transmission phase, it receives

$$x^f_k = g_{kk}q_k + \sum_{i \neq k} g_i q_i + z^f_k$$

$$= E[g_{kk}|x^p_k] q_k + (g_{kk} - E[g_{kk}|x^p_k]) q_k + \sum_{i \neq k} g_i q_i + z^f_k$$

$$= E[g_{kk}|x^p_k] q_k + z^f_k$$

(30)

where the effective noise

$$z^f_k = (g_{kk} - E[g_{kk}|x^p_k]) q_k + \sum_{i \neq k} g_i q_i + z^f_k.$$

The joint distribution of x^p_k and G is known to all users, because it depends only on the long-term statistics (and not the channel realization). In (30), the noise term z^f_k is uncorrelated with the signal q_k. Note that these terms are not independent, and we do not need independence in the proof. Following the steps used in the proof of Theorem 1, we obtain the achievable rate given in (29).

Remark 10: It is (computationally) easy to generate i.i.d. samples from the joint distribution of x^p_k and g_{kk}. Nevertheless, computing the conditional expectations can computationally be intensive, particularly for continuous random variables. However, in our setting, we can take advantage of the fact that z^f_k is independent of all other random variables. For example, consider the setting $Y = X + Z$, where Z is an independent random variable with probability density function (pdf) $f_Z(z)$. To compute $E[X|Y = y]$, we can generate i.i.d. samples of X, e.g., $\{x_i\}_{i=1}^L$, and compute

$$E[X|Y = y] \approx \sum_{i=1}^L x_i f_Z(y - x_i) / \sum_{i=1}^L f_Z(y - x_i).$$

This idea can be extended to our scenario. Irrespective of this case, numerical techniques exist, because it is possible to sample from the joint distribution.

We define the net achievable weighted-sum rate as

$$R_S = \max_{\tau_r} T - \tau_r - \tau_f - 1$$

which is consistent with the earlier definition.

In summary, we developed a technique that uses the channel estimate to obtain a precoding matrix that is “good” in expectation for several channel realizations around this estimate. We demonstrate the performance improvement through numerical examples in Section VI.

V. UPPER BOUND ON THE SUM RATE

As in the previous sections, we assume that an estimate \hat{H}, the statistics of H, \bar{H}, and H, and forward SNRs ρ^K_f are available at the base station. Using this information, the base station computes a precoding matrix A. The signal received by users is

$$x = E^f H A q + z.$$

As before, we denote the forward pilots received by the kth user using x^p_k. Let

$$C_j = \max_{p(q_j)} I(x_j; q_j|x^p_k)$$

where $p(q_j)$ is the pdf of q_j. The sum capacity is defined by

$$C = C_1 + \cdots + C_K.$$
In Sections III and IV, achievable rates for different communication scenarios were derived. The following simple theorem defines an upper bound on C.

Theorem 5: We have

$$C \leq \sum_{j=1}^{K} \log_2 \left(1 + \frac{\rho_j^f |h_j^T a_j|^2}{1 + \sum_{l \neq j} \rho_l^f |h_l^T a_l|^2} \right). \tag{31}$$

Proof: Let $G = HA$. Then

$$C_j = \max_{p(j)} I(x_j; q_j | x_k^p)$$

$$\leq \max_{p(j)} I(x_j; G; q_j | x_k^p)$$

$$= \max_{p(j)} \{ I(x_j; q_j | G, x_k^p) + I(G; q_j | x_k^p) \}$$

$$= \max_{p(j)} I(x_j; q_j | G)$$

$$= \log_2 \left(1 + \frac{\rho_j^f |h_j^T a_j|^2}{1 + \sum_{l \neq j} \rho_l^f |h_l^T a_l|^2} \right).$$

Here, we used the facts that G and q_j are independent and, therefore, $I(G; q_j | x_k^p) = 0$ and that x_k^p is a noisy version of G and, therefore, $I(x_j; q_j | G, x_k^p) = I(x_j; q_j | G)$. This is easy to see that the same bound is valid if no forward pilots are available to users. In general, this upper bound is valid for any particular scheme of generating precoding matrix A. Hence, the bound can be used in all communications scenarios considered in the previous sections. This way, we can obtain an upper bound on the sum rate of any specific communication scenario and any specific precoding method. In the numerical results presented in the next section, we demonstrate that the gap between our achievable rates derived in the previous sections and the corresponding upper bound is quite narrow.

Instead of using a specific precoding method in Theorem 5, we can try to use a precoding matrix A that maximizes (31), assuming that only H, the statistics of H, H, and H, and forward SNRs ρ_k^f are available at the base station. This approach would give us an upper bound that is not dependent on a specific precoding method. In the case that such an upper bound is close to the achievable sum rate of some specific precoding method, we can claim not only that we have closely identified the sum rate of that specific precoding method but also that the scheme itself is close to the optimal linear precoding.

The problem of finding a precoding matrix A that provably maximizes (31), particularly in the case when the true channel matrix H is not available, looks to be very hard. We suggest the following approximate approach. The algorithm described in Section IV-A allows us to find, approximately, A that provides a local maximum for $\mathbb{E}_H[R(H + H, A)]$. Running the algorithm several times, with distinct random matrices for Δ and D in step 1, we can find several, e.g., 100, local maxima of $\mathbb{E}_H[R(H + H, A)]$. Let C-UB-Opt be the maximum of these local maxima. Although, strictly speaking, C-UB-Opt is not the global maximum of $\mathbb{E}_H[R(H + H, A)]$, it is likely that there is no linear precoding method that would significantly outperform C-UB-Opt. In the next section, we will use C-UB-Opt as a scheme-independent upper bound for some communication scenarios.

VI. NUMERICAL RESULTS

Scheme UB refers to the upper bound that was obtained by assuming perfect knowledge of the effective channel matrix at the users. Note that this upper bound is scheme dependent. We have conducted extensive simulations for various system parameters, and the observations provided are based on these simulations. However, we provide only a few representative numerical results here.

A. Training on the Reverse Link Only

We consider this transmission method in the communication regime when SNRs are low. Scheme 0 denotes the ZF precoding method, and scheme 1 denotes the generalized ZF precoding method with optimized p_j values but no user selection. Scheme 2 denotes the method where the user selection is used along with scheme 1. Schemes 1 and 2 are techniques that were developed in this paper. Scheme 0 refers to the scheme in [21].

1) Homogeneous Users: For homogenous users, scheme 1 is identical to scheme 0. First, we keep the training sequence length equal to the number of users, i.e., $\tau^r = K$. This setting is clearly the minimum channel training overhead. In Fig. 4, we plot the sum rate versus the number of users $K = \{1, 2, \ldots, M\}$ for $M = 16$ when forward SNR $\rho^f = 0$ dB and reverse SNR $\rho^r = -10$ dB. In addition to the sum rates of schemes 0 and 2, we plot the upper bound obtained according to Theorem 5, scheme 2 performance when CSI is available at the base station, and the DPC upper bound. The reduction in sum rate due to the lack of full CSI at the base station is significant. As expected, the performance of DPC is significantly better compared with the linear precoder, particularly when $M = K$. Hereafter, we do not make comparisons with DPC, because our focus is on linear precoders with channel imperfections. Because the gap between the scheme-2 sum rate and scheme-2 upper bound is relatively small, the restriction to training on the reverse link only is not significant for the SNRs considered here. We observe that the user selection strategy used in scheme 2 gives significant improvement over the existing scheme 0. In Fig. 5, we plot the number of users selected
by scheme 2 N_{opt} versus the number of users present K for different SNRs (as mentioned in the plot) and $M = 16$.

2) Heterogeneous Users: We consider coherence interval $T = 30$ symbols and 12 users with forward SNRs $\{0, 0, 0, 5, 5, 5, 5, 5, 10, 10, 10\}$ dB. The reverse SNR associated with every user is considered to be 10 dB lower than its forward SNR. All users are assigned unit weights. We plot the net achievable sum rate versus M for this system in Fig. 6. The improvement that was obtained using the modified ZF precoding with optimized p_i values is significant. Note that the performance gain due to user selection is very significant when the number of users is comparable with the number of base-station antennas.

3) Optimal Training Length: We consider a homogeneous system with $M = 32$ antennas at the base station, $K = 8$ users, and a coherence interval of $T = 30$ symbols. For scheme 2, we obtain the optimal training length and the net sum rate for different values of forward SNR through brute-force optimization. For every forward SNR considered, we take the reverse SNR to be 10 dB lower than the corresponding forward SNR. We plot the optimal training lengths in Fig. 7 and the net sum rates in Fig. 8. The behavior of the optimal training length with reverse SNR is as predicted in Section III-F, i.e., $T/2$ in the low-SNR regime and K in the high-SNR regime. In Fig. 8, we denote ZF with user selection (scheduling) by ZF-Sch and the corresponding upper bound by ZF-Sch-UB.

B. Training on the Reverse and Forward Links

We consider this transmission method for moderate-to-high SNRs. We use FP(n) to denote a precoding method using n number of forward pilots. Note that FP(0) denotes training only on the reverse link. We denote the results obtained with ZF with user selection by ZF-Sch, the approach in [22] by SVH, and the modified algorithm given in Section IV-A by Mod-SVH. We compare the performance of different methods using numerical examples. For the algorithm Mod-SVH, we use the value $L = 50$ in the simulations and five iterations. We observe that these five iterations is enough to provide numerical convergence (i.e., a reasonable error bound) in our examples.

We consider a system with $K = 8$ users, $M = 8$ antennas at the base station, a reverse training length of $\tau_r = 8$, and a coherence interval of $T = 30$ symbols. We consider the following example. We keep the value of reverse SNR 10 dB lower than the forward SNR. For the different methods considered, we obtain the achievable sum rate for forward SNRs ranging from 5 dB to 30 dB. These sum rates are given in Table I. We plot the methods ZF-Sch-FP(0) and Mod-SVG-FP(1) in Fig. 9.
We observe significant improvement in the net rate by utilizing forward pilots at high forward SNRs. In addition, note that we perform reasonably close to the upper bound by using one or two forward pilots.

VII. CONCLUSION

We have developed a general framework to study downlink TDD systems that account for the channel training overhead and channel estimation error. In contrast to the limited-feedback framework for FDD systems, we account for all channel training overhead in the overall system throughput. In the first part of this paper, we have focused on downlink systems with a large number of antennas at the base station. We clearly demonstrate the advantage of the TDD operation in this setting. In particular, with the increasing number of base-station antennas, the TDD operation helps in improving the effective forward channel with the increasing number of base-station antennas. We present a linear precoding method that results from an approach to find a local maximum for a nonconvex optimization problem that is related to the system throughput. Through simulations, we have shown that these precoding schemes provide good overall system throughput.

ACKNOWLEDGMENT

The authors would like to thank T. L. Marzetta for the helpful discussions on this paper.

REFERENCES

Sriram Vishwanath (S’98–M’04–SM’08) received the B.Tech. degree in electrical engineering from the Indian Institute of Technology Madras, Chennai, India, in 2000, and the M.S. degree in electrical engineering from the University of Texas at Austin (UT Austin), in 2006. He is currently working toward the Ph.D. degree in electrical and computer engineering with the Department of Electrical and Computer Engineering, UT Austin. His research interests include communication networks, with emphasis on wireless communication, information theory, and network optimization. He received the WNGC student leadership award in 2011.

Jubin Jose (S’08) received the B.Tech. degree in electrical engineering from the Indian Institute of Technology Madras, Chennai, India, in 2006 and the M.S. degree in electrical and computer engineering from the University of Texas at Austin (UT Austin), in 2008. He is currently working toward the Ph.D. degree in electrical and computer engineering with the Department of Electrical and Computer Engineering, UT Austin. His industry experience includes positions with NEC Laboratory, Princeton, NJ; Qualcomm Corporate R&D, San Diego, CA; and Alcatel-Lucent Bell Laboratory, Murray Hill, NJ. His research interests include communication networks, with emphasis on wireless communication, information theory, and network optimization. He received the WNGC student leadership award in 2011.

Alexei Ashikhmin (M’00–SM’08) received the Ph.D. degree in electrical engineering from the Russian Academy of Science, Moscow, Russia, in 1994. In 1995 and 1996, he was with the Department of Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands. From 1997 to 1999, he was a Postdoctoral Fellow with the Modeling, Algorithms, and Informatics Group, Los Alamos National Laboratory, Los Alamos, NM. Since 1999, he has been with Bell Laboratories, Murray Hill, NJ, where he is currently a Member of Technical Staff with the Communications and Statistical Sciences Department. In 2005–2007, he was an Adjunct Professor with Columbia University, New York, NY, where he taught error correcting codes and communications theory. His research interests include communications theory, the theory of error correcting codes, and classical and quantum information theory.

Dr. Ashikhmin is a Senior Member of the IEEE Information Theory Society. He is currently an Associate Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY, which he also served from 2003 to 2006. He is the recipient of the President’s Gold Award from Bell Laboratories in 2002 for breakthrough research that has resulted in the ability to deliver unprecedented wireless bit rates, the S. O. Rice Prize Paper Award from the IEEE Communications Society in 2005 for work on low-density parity check codes for information transmission with multiple antennas, and the Bell Laboratories Team Award for crosstalk cancellation in digital subscriber line systems in 2010.

Phil Whiting received the B.A. degree from the University of Oxford, Oxford, U.K., the M.Sc. degree from the University of London, London, U.K., and the Ph.D. degree in queuing theory from the University of Strathclyde, Glasgow, U.K. After a postdoctoral post with the University of Cambridge, Cambridge, U.K., his interests have centered on wireless communications. In 1993, he participated in the Telstra trial of Qualcomm CDMA in southeastern Australia. He then joined the Mobile Research Center, University of South Australia, Adelaide. Since 1997, he has been with the Communications and Statistical Sciences Department, Bell Laboratories, Murray Hill, NJ. His research interests include the mathematics of wireless networks, particularly stochastic models for resource allocation and information and coding theory. His current research includes scheduling in wireless multiple-input–multiple-output networks, random matrices, and theoretical analysis of digital subscriber line systems.

Sriram Vishwanath (S’98–M’04–SM’08) received the B.Tech. degree in electrical engineering from the Indian Institute of Technology Madras, Chennai, India, in 1998, the M.S. degree in electrical engineering from the California Institute of Technology, Pasadena, in 1999, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, in 2003. His industry experience includes positions with Bell Laboratories, Alcatel-Lucent Inc., Holmdel, NJ, and the National Semiconductor Corporation, Santa Clara, CA. He is currently an Associate Professor with the Department of Electrical and Computer Engineering, University of Texas, Austin. His research interests include network information theory, wireless systems, and mobile systems.

Dr. Vishwanath received the National Science Foundation Faculty Early Career Development Award in 2005 and the U.S. Army Research Office Young Investigator Award in 2008. He coreceived the 2005 Joint IEEE Information Theory Society and IEEE Communications Society Best Paper Award. He served as the General Chair of the IEEE Wireless Network Coding conference in 2010, the Local Arrangements Chair of the 2010 IEEE International Symposium on Information Theory, and Guest Editor-in-Chief of the IEEE TRANSACTIONS ON INFORMATION THEORY Special Issue on Interference Networks.