HYBRID ARQ IN WIRELESS NETWORKS

Emina Soljanin
Mathematical Sciences Research Center, Bell Labs

June 20, 2003

R. Liu and P. Spasojevic
WINLAB
ACKNOWLEDGEMENTS

1xEVDV

Alexei Ashikhmin
Jaehyiong Kim
Sudhir Ramakrishna
Adriaan van Wijngaarden
AUTOMATIC REPEAT REQUEST

• The receiving end detects frame errors and requests retransmissions.

• P_e is the frame error rate, the average number of transmissions is

\[1 \cdot (1 - P_e) + \cdots + n \cdot P_e^{n-1} (1 - P_e) + \cdots = \frac{1}{1 - P_e}\]

• Hybrid ARQ uses a code that can correct some frame errors.

• In HARQ schemes
 – the average number of transmissions is reduced, but
 – each transmission carries redundant information.
Decoding the name of an information theorist from its noisy version:

EMRE
ARQ
An Example

• Decoding the name of an information theorist from its noisy version:

EMRE
ARQ

An Example

• Decoding the name of an information theorist from its noisy version:

 MRE
ARQ
An Example

• Decoding the name of an information theorist from its noisy version:

\[\text{IMRE}\]

• Increasing redundancy:

\[\text{EMR E}\]
ARQ

An Example

• Decoding the name of an information theorist from its noisy version:

 E M R E

• Increasing redundancy:

 E M R E T E L A T A R
ARQ
An Example

- Decoding the name of an information theorist from its noisy version:

 IMRE

- Increasing redundancy:

 EMRE TELATAR

 IMRE

 IMRE
ARQ
An Example

• Decoding the name of an information theorist from its noisy version:

 E M R E
 I M R E

• Increasing redundancy:

 E M R E T E L A T A R
 I M R E C S I S Z A R
THROUGHPUT IN HYBRID ARQ
BPSK, AWGN, BCH Coded

E_s/N_0 [dB]
TYPE II HYBRID ARQ

Incremental Redundancy

- Puncturing:

 E M R E T E L A T A R
TYPE II HYBRID ARQ
Incremental Redundancy

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

M R E
TYPE II HYBRID ARQ
Incremental Redundancy

• Puncturing:

\[\text{E M R E T E L A T A R} \]

• Rate compatible:

\[\text{M R E A R} \]
TYPE II HYBRID ARQ
Incremental Redundancy

- Puncturing:

 E M R E T E L A T A R

- Rate compatible:

 M R E T E L A A R
TYPE II HYBRID ARQ
Incremental Redundancy

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R
TYPE II HYBRID ARQ
Incremental Redundancy

- Puncturing:
 EMRETELATAR

- Rate compatible:
 EMRETELATAR

- Not rate compatible:
 MRE
TYPE II HYBRID ARQ
Incremental Redundancy

- Puncturing:

 E M R E T E L A T A R

- Rate compatible:

 E M R E T E L A T A R

- Not rate compatible:

 M E A R
TYPE II HYBRID ARQ
Incremental Redundancy

• Puncturing:

 E M R E T E L A T A R

• Rate compatible:

 E M R E T E L A T A R

• Not rate compatible:

 M E T E L A A
TYPE II HYBRID ARQ
Incremental Redundancy

• Puncturing:

 E M R E T E L A T A R

• Rate compatible:

 E M R E T E L A T A R

• Not rate compatible:

 E E T E L T A
TYPE II HYBRID ARQ
Incremental Redundancy

- Puncturing:

 E M R E T E L A T A R

- Rate compatible:

 E M R E T E L A T A R

- Not rate compatible:

 E E T E L T A
TYPE II HYBRID ARQ
Incremental Redundancy

- Information bits are encoded by a (low rate) mother code.
- Information and a selected number of parity bits are transmitted.
- If a retransmission is not successful:
 - transmitter sends additional selected parity bits
 - receiver puts together the new bits and those previously received.
- Each retransmission produces a codeword of a stronger code.
- Family of codes obtained by puncturing of the mother code.
INCREMENTAL REDUNDANCY

A Rate $\frac{1}{5}$ Mother Code

\[\text{at the transmitter} \]
INCREMENTAL REDUNDANCY

A Rate 1/5 Mother Code

at the transmitter

transmission #1

at the receiver
INCREMENTAL REDUNDANCY

A Rate 1/5 Mother Code

at the transmitter

transmission # 1

transmission # 2

at the receiver
INCREMENTAL REDUNDANCY

A Rate $\frac{1}{5}$ Mother Code

At the transmitter

Transmission # 1

Transmission # 2

Transmission # 3

At the receiver
INCREMENTAL REDUNDANCY

A Rate $1/5$ Mother Code

at the transmitter

transmission # 1

transmission # 2

transmission # 3

transmission # 4

at the receiver
THROUGHPUT IN HYBRID ARQ

HARQ Scheme based on Turbo codes in AWGN Channel

Throughput of new puncturing scheme
Throughput of standard
BPSK Capacity
Cutoff Rate
RANDOMLY PUNCTURED CODES

- The mother code is an \((n, k)\) rate \(R\) turbo code.
- Each bit is punctured independently with probability \(\lambda\).
- The expected rate of the punctured code is \(R/(1 - \lambda)\).
- For large \(n\) we have

\[
\begin{align*}
\text{TURBO CODE} & \quad \text{PUNCTURING DEVICE} \\
k \text{ BITS} & \quad n \text{ BITS} & \quad (1 - \lambda)n \text{ BITS}
\end{align*}
\]
A FAMILY OF RANDOMLY PUNCTURED CODES

Rate Compatible Puncturing

• The mother code is an \((n, k)\) rate \(R\) turbo code.

• \(\lambda_j\) for \(j = 1, 2, \ldots, m\) are puncturing rates, \(\lambda_j > \lambda_k\) for \(j < k\).

• If the \(i\)-th bit is punctured in the \(k\)-th code and \(j < k\), then it was punctured in the \(j\)-th code.

• \(\theta_i\) for \(i = 1, 2, \ldots, n\) are uniformly distributed over \([0, 1]\).

• If \(\theta_i < \lambda_l\), then the \(i\)-th bit is punctured in the \(l\)-th code.
MEMORYLESS CHANNEL MODEL

- Binary input alphabet \(\{0, 1\} \) and output alphabet \(\mathcal{Y} \).

- Constant in time with transition probabilities \(W(b|0) \) and \(W(b|1) \), \(b \in \mathcal{Y} \).

- Time varying with transition probabilities at time \(i \) \(W_i(b|0) \) and \(W_i(b|1) \), \(b \in \mathcal{Y} \).

- \(W_i(\cdot|0) \) and \(W_i(\cdot|1) \) are known at the receiver.
PERFORMANCE MEASURE

Time Invariant Channel

- Sequence $x \in C \subseteq \{0, 1\}^n$ is transmitted, and x' decoded.

- Sequences x and x' are at Hamming distance d.

- The probability of error $P_e(x, x')$ can be bounded as

$$P_e(x, x') \leq \gamma^d = \exp\{-d\alpha\},$$

where γ is the Bhattacharyya noise parameter:

$$\gamma = \sum_{b \in \mathcal{Y}} \sqrt{W(b|0)W(b|1)}$$

and $\alpha = -\log \gamma$ is the Bhattacharyya distance.
PERFORMANCE MEASURE

• An \((n, k)\) binary linear code \(C\) with \(A_d\) codewords of weight \(d\).

• The union-Bhattacharyya bound on word error probability:

\[
P_{W}^{C} \leq \sum_{d=1}^{n} A_d e^{-\alpha d}.
\]

• Weight distribution \(A_d\) for a turbo code?

• Consider a set of codes \([C]\) corresponding to all interleavers.

• Use the average \(\overline{A}_d^{[C]}(n)\) instead of \(A_d\) for large \(n\).
• There is an ensemble distance parameter c^C_0 s.t. for large n,

$$\overline{A}_d^{[C]}(n) \leq \exp(d c^C_0) \text{ for large enough } d.$$

• For a channel whose Bhattacharyya distance $\alpha > c^C_0$, we have

$$\overline{P}_W^{[C]}(n) = O(n^{-\beta}).$$

• c^C_0 is the ensemble noise threshold.
• Is there the punctured ensemble noise threshold $c_{0}^{[C_P]}$:

$$\overline{A}_{j}^{[C_P]}(n) \leq \exp(jc_{0}^{[C_P]}) \text{ for large enough } n \text{ and } j.$$

• The expected number of codewords of weight j:

$$\overline{A}_{j}^{[C_P]}(n) = \sum_{d \geq j} \overline{A}_{d}^{[C]}(n) \binom{d}{j} \lambda^{d-j}(1 - \lambda)^j$$

• If $\log \lambda < -c_{0}^{[C]}$,

$$c_{0}^{[C_P]} \leq \log \left[\frac{1 - \lambda}{\exp(-c_{0}^{[C]}) - \lambda} \right].$$
PUNCTURED TURBO CODE ENSEMBLES

Throughput vs. Es/N0 (dB) for different punctured turbo codes and BPSK capacity. The graph shows the cutoff rate for $R=0.82$. The punctured turbo codes are denoted as follows:
- Punctured TC $k=384$
- Punctured TC $k=3840$
- BPSK Capacity
- Cutoff Rate
HARQ MODEL

• There are at most m transmissions.

• $I = \{1, \ldots, n\}$ is the set indexing the bit positions in a codeword.

• I is partitioned in m subsets $I(j)$, for $1 \leq j \leq m$.

• Bits at positions in $I(j)$ are transmitted during j-th transmission.

• The channel remains constant during a single transmission:

$$\gamma_i = \gamma(j) \text{ for all } i \in I(j).$$
PERFORMANCE MEASURE

Time Varying Channel

• Let $W^n(y|x) = \prod_{i=1}^{n} W_i(y_i|x_i)$.

• Sequence $x \in C \subseteq \{0, 1\}^n$ is transmitted, and x' decoded.

• The probability of error $P_e(x, x')$ can be bounded as

$$P_e(x, x') \leq \sum_{y \in \mathcal{Y}^n} \sqrt{W^n(y|x)W^n(y|x')}$$

$$= \prod_{i=1}^{n} \left(\sum_{b \in \mathcal{Y}} \sqrt{W_i(b|x_i)W_i(b|x_i')} \right)$$

$$\leq \prod_{i : x_i \neq x'_i} \gamma_i$$
HARQ PERFORMANCE

• d_j is the Hamming distance between x and x' over $I(j)$.

• The probability of error $P_e(x, x')$ can be bounded as

$$P_e(x, x') \leq \prod_{j=1}^{m} \gamma(j)^{d_j}$$

• $A_{d_1 \ldots d_m}$ is the number of codewords with weight d_j over $I(j)$.

• The union bound on the ML decoder word error probability:

$$P \leq \sum_{d_1=1}^{\lfloor \frac{|I(1)|}{d_1} \rfloor} \cdots \sum_{d_m=1}^{\lfloor \frac{|I(m)|}{d_m} \rfloor} A_{d_1 \ldots d_m} \prod_{j=1}^{m} \gamma(j)^{d_j}$$
HARQ PERFORMANCE
Random Transmission Assignment

• A bit is assigned to transmission \(j \) with probability \(\alpha_j \).

• \(d \) is the weight of the original codeword.

• \(d_j \) is the weight of the \(d \)-th transmission sub-word.

• The probability that the sub-word weights are \(d_1, d_2 \ldots, d_m \) is

\[
{d \choose d_1} {d - d_1 \choose d_2} \cdots {d - d_1 \cdots - d_{m-1} \choose d_m} \alpha_1^{d_1} \alpha_2^{d_2} \cdots \alpha_m^{d_m}
\]
HARQ PERFORMANCE
Random Transmission Assignment

- The union bound on the ML decoder word error probability:

\[P \leq \sum_{d_1=1}^{\mid I(1)\mid} \cdots \sum_{d_m=1}^{\mid I(m)\mid} A_{d_1 \ldots d_m} \prod_{j=1}^{m} \gamma(j)^{d_j} \]

- The expected value of the union bound is

\[\sum_{d} A_d \left(\sum_{j=1}^{m} \gamma(j) \alpha_j \right)^d \]

- The average Bhattacharyya noise parameter:

\[\bar{\gamma} = \sum_{j=1}^{m} \gamma(j) \alpha_j \]
A RANDOMLY PUNCTURED TURBO CODE

An Example of Random Transmission Assignment

- The puncturing probability is λ.
- Transmission over the channel with noise parameter γ.
- Equivalent to having two transmissions:
 - first with assignment probability $(1 - \lambda)$ and noise parameter γ;
 - second with assignment probability λ and noise parameter 1.
- The average noise parameter is $\overline{\gamma} = (1 - \lambda)\gamma + \lambda$.
- The requirement $-\log \overline{\gamma} > c_0^{[C]}$ translates into

$$-\log \gamma > \log \left[\frac{1 - \lambda}{\exp (\overline{c_0^{[C]}}) - \lambda} \right].$$
INCREMENTAL REDUNDANCY

Concluding Remarks

at the transmitter

- transmission # 1
- transmission # 2
- transmission # 3
- transmission # 4

at the receiver