OWL Tutorial
Reasoning Services

Reasoning services help knowledge engineers and users to build and use ontologies.

(Many of the following slides have been taken from a longer tutorial on Logical Foundations for the Semantic Web by Ian Horrocks and Ulrike Sattler)

Complexity of Ontology engineering

Ontology engineering tasks:
- design
- evolution
- inter-operation and Integration
- deployment

Further complications are due to:
- sheer size of ontologies
- number of persons involved
- users not being knowledge experts
- natural laziness
- etc.

Reasoning Services: what we might want in the Design Phase

- be warned when making meaningless statements
 - test satisfiability of defined concepts
 \[\text{SAT}(C, T) \text{ iff there is a model } I \text{ of } T \text{ with } C^I \neq \emptyset \]
 unsatisfiable, defined concepts are signs of faulty modelling
- see consequences of statements made
 - test defined concepts for subsumption
 \[\text{SUBS}(C, D, T) \text{ iff } C^I \subseteq D^I \text{ for all model } I \text{ of } T \]
 unwanted or missing subsumptions are signs of imprecise/faulty modelling
- see redundancies
 - test defined concepts for equivalence
 \[\text{EQUIV}(C, D, T) \text{ iff } C^I = D^I \text{ for all model } I \text{ of } T \]
 knowing about "redundant" classes helps avoid misunderstandings

Reasoning Services: what we might want when Modifying Ontologies

- the same system services as in the design phase, plus
- automatic generation of concept definitions from examples
 - given individuals \(o_1, \ldots, o_n\) with assertions ("ABox") for them, create a (most specific) concept \(C\) such that each \(o_i \in C^I\) in each model \(I\) of \(T\) "non-standard inferences"
- automatic generation of concept definitions for too many siblings
 - given concepts \(C_1, \ldots, C_m\), create a (most specific) concept \(C\) such that \(\text{SUBS}(C_i, C, T)\) "non-standard inferences"
- etc.
Reasoning Services: what we might want when Integrating and Using Ontologies

For integration:
- the same system services as in the design phase, plus
- the possibility to abstract from concepts to patterns and compare patterns
 ➔ e.g., compute those concepts D defined in T_2 such that
 \[
 \text{SUBS}(\text{Human} \sqcap (\forall \text{child}.(X \sqcap \forall \text{child}.Y)), D, T_1 \cup T_2)
 \]
 “non-standard inferences”

When using ontologies:
- the same system services as in the design phase and the integration phase, plus
- automatic classification of individuals
 ➔ given individual o with assertions, return all defined concepts D such that
 \[
 o \in D^2 \text{ for all models } \mathcal{I} \text{ of } T
 \]

Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is
 SAT is semi-decidable iff co-SUBS is
 ➔ if SAT is undecidable but semi-decidable, then
 there exists a complete SAT algorithm:
 \[
 \text{SAT}(C, T) \iff \text{“satisfiable”}, \text{ but might not terminate if not SAT}(C, T)
 \]
 there is a complete co-SUBS algorithm:
 \[
 \text{SUBS}(C, T) \iff \text{“subsumption”}, \text{ but might not terminate if SUBS}(C, D, T))
 \]

1. Do expressive ontology languages exist with decidable reasoning problems?
 Yes: DAML+OIL and OWL DL

2. Is there a practical difference between ExpTime-hard and non-terminating?
 let’s see

Reasoning Services: what we can do

(many) reasoning problems are inter-reducible:

\[
\begin{align*}
\text{EQUIV}(C, D, T) & \text{ iff } \text{sub}(C, D, T) \text{ and } \text{sub}(D, C, T) \\
\text{SUBS}(C, D, T) & \text{ iff } \text{not SAT}(C \sqcap \neg D, T) \\
\text{SAT}(C, T) & \text{ iff } \text{not SUBS}(C, A \sqcap \neg A, T) \\
\text{SAT}(C, T) & \text{ iff } \text{cons}({o: C}, T)
\end{align*}
\]

➔ In the following, we concentrate on SAT(C, T)

Relationship with other Logics

- SHI is a fragment of first order logic
- $SHIQ$ is a fragment of first order logic with counting quantifiers equality
- SHI without transitivity is a fragment of first order with two variables
- ALC is a notational variant of the multi modal logic K
 inverse roles are closely related to converse/past modalities
 transitive roles are closely related to transitive frames/axiom 4
 number restrictions are closely related to deterministic programs in PDL
Deciding Satisfiability of $SHIQ$

Remember: $SHIQ$ is OWL DL without datatypes and nominals.

Next: tableau-based decision procedure for SAT (C,T)

The algorithm proceeds by trying to construct a representation of a model I for C. This can be done because there always is such a representation, and the representation is at most of size exponential in the size of the ontology.

Complexity of DLs: Summary

Deciding satisfiability (or subsumption) of

<table>
<thead>
<tr>
<th>concepts in</th>
<th>Definition</th>
<th>without a TBox is</th>
<th>w.r.t. a TBox is</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC</td>
<td>$\forall R.C, \forall R.C.$</td>
<td>PSpace-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>S</td>
<td>$ALC +$ transitive roles</td>
<td>PSPace-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>SI</td>
<td>$SI +$ inverse roles</td>
<td>PSpace-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>SH</td>
<td>$S +$ role hierarchies</td>
<td>ExpTime-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>$SHIQ$</td>
<td>$SH +$ number restrictions</td>
<td>ExpTime-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>$SHIQO$</td>
<td>$SH +$ nominals</td>
<td>NExpTime-c</td>
<td>NExpTime-c</td>
</tr>
<tr>
<td>$SHIQ^+$</td>
<td>$SHIQ +$ "naive number restrictions"</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
<tr>
<td>SH^+</td>
<td>$SH +$ "naive role hierarchies"</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

$SHIQ$ is ExpTime-hard because ALC with TBoxes is and $SHIQ$ can internalise TBoxes: polynomially reduce $SAT(C,T)$ to $SAT(C_T,\emptyset)$

$$C_T := C \cap \bigcap_{C_i \in D_i \in T} (C_i \Rightarrow D_i) \cap \forall U \bigcap_{C_i \in D_i \in T} (C_i \Rightarrow D_i)$$

for U new role with $\text{trans}(U)$, and $R \subseteq U, R^\rightarrow \subseteq U$ for all roles R in T or C

Lemma: C is satisfiable w.r.t. T iff C_T is satisfiable.

Why is $SHIQ$ in ExpTime?

Tableau algorithms runs in worst-case non-deterministic double exponential space using double exponential time....

$SHIQ$ is in ExpTime

Translation of $SHIQ$ into Büchi Automata on infinite trees

$$C, T \leadsto A_{C,T}$$

such that

1. $SAT(C,T)$ iff $L(A_{C,T}) \neq \emptyset$
2. $|A_{C,T}|$ is exponential in $|C| + |T|$ (states of C,T are sets of subconcepts of C and T)

This yields ExpTime decision procedure for $SAT(C,T)$ since emptyness of $L(A)$ can be decided in time polynomial in $|A|$

Problem $A_{C,T}$ needs (?) to be constructed before being tested: best-case ExpTime
SHIQO (roughly OWL DL) is NExpTime-hard

Fact: for **SHIQ** and **SHOQ**, SAT\((C,T)\) are ExpTime-complete

I stands for "with inverse roles", O" for "with nominals"

Lemma: their combination is NExpTime-hard
even for **ALCQIO**, SAT\((C,T)\) is NExpTime-hard

Implementing OWL Lite or OWL DL

Naïve implementation of **SHIQ** tableau algorithm is doomed to failure:

Construct a tree of exponential depth in a non-deterministic way

\(\rightsquigarrow\) requires backtracking in a deterministic implementation

Optimisations are crucial

A selection of some vital optimisations:

Classification: reduce number of satisfiability tests when classifying TBox

Absorption: replace globally disjunctive axioms by local versions

Optimised Blocking: discover loops in proof process early

Backjumping: dependency-directed backtracking

SAT optimisations: take good ideas from SAT provers

Missing in SHIQ from OWL DL: Datatypes and Nominals

(Remember: I stands for "with inverse roles", O" for "with nominals")

So far, we discussed DLs that are fragments of OWL DL

SHIQ + Nominals = SHIQO

- we have seen: **SHIQO** is NExpTime-hard
- so far: no "goal-directed" reasoning algorithm known for **SHIQO**
- unclear: whether **SHIQO** is "practicable"
- but: t-algorithm designed for **SHOQ**
 \(\Rightarrow\) live without nominals or inverses

SHIQ + Datatypes = SHIQ(D_n)

SHOQ + Datatypes = SHOQ(D_n)

- extend **SHIQ** with concrete data and built-in predicates
- extend **SHIQ** with, e.g.,
 \(\exists\)age. > 18 or \(\exists\)age, shoeSize. =
- relevant in many ontologies
- dangerous, but well understood extension
currently being implemented and tested for **SHOQ** (D)

Missing in SHIQ from OWL DL: Datatypes

In DLs, datatypes are known as concrete domains

Concrete domain \(D + (\text{dom}(D), \text{pred})\) consists of

- a set \(\text{dom}(D)\), e.g., integers, strings, lists of reals, etc.
- a set \(\text{pred}\) of predicates, each predicate \(P \in \text{pred}\) comes with
 - arity \(n \in \mathbb{N}\) and
 - a (fixed!) extension \(P^n \subseteq \text{dom}(D)^n\)
- e.g. predicates on \(\mathbb{Q}\): unary \(=\), \(\le\), binary \(\le\), \(\le\), ternary \(\{(x, y, z) \mid x + y = y\}\)
Summing up: SAT and SUBS in OWL DL

We know

- how to reason in \mathcal{SHIQ} (proven to be ExpTime-complete) implementations and optimisations well understood
- how to reason in $\mathcal{SHOQ}(D)$ (decidable, exact complexity unknown) optimisation for nominals \mathcal{O} need more investigations optimisation for (D) are currently being investigated
- that their combination, OWL DL1, is more complex: NExpTime-hard so far, no “goal-directed” reasoning algorithm known for OWL DL
- accept an incomplete algorithm for OWL DL
- use a first-order prover for reasoning (and accept possibility of non-termination)
- live with OWL Lite while waiting for complete OWL DL algorithm

1. $\mathcal{SHIQO}(D)$ with number restrictions restricted to $\geq nR. \top$, $\leq nR. \top$

ABoxes and Instances

Remember: when using ontologies, we would like to automatically classify individuals described in an ABox

an ABox A is a finite set of assertions of the form

$C(a)$ or $R(a, b)$

I is a model of A if $a^I \in C^I$ for each $C(a) \in A$

$(a^I, b^I) \in R^I$ for each $R(a, b) \in A$

Cons(A, T) if there is a model I of A and T

Inst(a, C, A, T) if $a^I \in C^I$ for each model I of A and T

Easy: Inst(a, C, A, T) if not Cons($A \cup \{\neg C(a)\}, T$)

Example: $A = \{A(a), R(a, b), A(b), S(b, c), B(c)\}$

$T = \{A \sqsubseteq \mathcal{L}R. \top\}$

Inst($a, \forall R.A, A, T$) but not Inst($b, \forall S.B, A, T$)

ABoxes and Instances

How to decide whether Cons(A, T)?

\triangleright extend tableau algorithm to start with ABox

$C(a) \in A \Rightarrow C \in \mathcal{L}(a)$

$R(a, b) \in A \Rightarrow (a, R, b)$

this yields a graph—in general, not a tree

work on forest—rather than on a single tree

i.e., trees whose root nodes intertwine in a graph

theoretically not too complicated

many problems in implementation

Current Research: how to provide ABox reasoning for huge ABoxes

approach: restrict relational structure of ABox

Non-Standard Reasoning Services

For Ontology Engineering, useful reasoning services can be based on SAT and SUBS

Are all useful reasoning services based on SAT and SUBS?

Remember: to support modifying ontologies, we wanted

- automatic generation of concept definitions from examples

 \triangleright given ABox A and individuals a_i create

 a (most specific) concept C such that each $a_i \in C^I$ in each model I of T

 $\text{msc}(a_1, \ldots, a_n), A, T$

- automatic generation of concept definitions for too many siblings

 \triangleright given concepts C_1, \ldots, C_n, create

 a (most specific) concept C such that $\text{SUBS}(C, C_1, T)$

 $\text{lcs}(C_1, \ldots, C_n), A, T$
Non-Standard Reasoning Services: msc and lcs

Unlike SAT, SUBS, etc., msc and lcs are computation problems

Fix a DL \mathcal{L}. Define

$C = \text{msc}(a_1, \ldots, a_n, A, T)$ iff $a_i^T \in C^T \forall 1 \leq i \leq n$ and $\forall \mathcal{I}$ model of A and T

C is the smallest such concept, i.e.,

if $a_i^T \in C^T \forall 1 \leq i \leq n$ and $\forall \mathcal{I}$ model of A and T

then $\text{SUBS}(C, C^0, T)$

$C = \text{lcs}(C_1, \ldots, C_n, T)$ iff $\text{SUBS}(C_i, C, T) \forall 1 \leq i \leq n$

C is the smallest such concept, i.e.,

if $C_i \in C^T \forall 1 \leq i \leq n$

then $\text{SUBS}(C, C^0, T)$

Clear: $\text{msc}(a_1, \ldots, a_n, A, T) = \text{lcs}(\text{msc}(a_1, A, T), \ldots, \text{msc}(a_n, A, T))$

$\text{lcs}(C_1, C_2, C_3, T) = \text{lcs}(\text{lcs}(C_1, C_2, T), C_3, T)$

Non-Standard Reasoning Services: other

concept pattern: concept with variables in the place of concepts

The following non-standard reasoning services also come w.r.t. TBoxes

unification: $C \equiv^? D$ for C, D concept patterns

solution to $C \equiv^? D$: a substitution σ (replacing variables with concepts)

such that $\sigma(C) \equiv \sigma(D)$

Goal: decide unification problem and find a (most specific) such substitution

matching: $C \equiv^? D$ for C concept patterns and D a concept

solution to $C \equiv^? D$: a substitution σ with $\sigma(C) \equiv D$

approximation: given DLs $\mathcal{L}_1, \mathcal{L}_2$ and \mathcal{L}_1-concept C, find \mathcal{L}_2-concept \hat{C} with $\text{SUBS}(C, \hat{C})$ and

$\text{SUBS}(C, D)$ implies $\text{SUBS}(\hat{C}, D)$ for all \mathcal{L}_2-concepts D

rewriting given C, T, find “shortest” \hat{C} such that $\text{EQUIV}(C, \hat{C}, T)$

Known Results:

- lcs in DLs with \sqcup is useless: $\text{lcs}(C_1, C_2, T) = C_1 \sqcup C_2$

- $\text{msc}(a, A, T)$ might not exist: e.g., $\mathcal{L} = \mathcal{ALC}$

 $T = \emptyset$

 $A = \{A(a), R(a, a)\}$

 $\text{msc}(a, A, T) = A \sqcap \exists R.A? A \sqcap \exists R.(A \sqcap \exists R.A)$?

- \exists DLs: (SUBS, SAT) msc, lcs are decidable/computable in polynomial time

 \mathcal{EL} with cyclic TBoxes (only \sqcap and $\exists R.C$)

- \exists DLs: lcs can be computed, but might be of exponential size

 \mathcal{ALC} (only \sqcap, primitive \neg, $\forall R.C$, $\exists R.C$)

Resources

ESSLI Tutorial by Ian Horrocks and Ulrike Sattler
http://www.cs.man.ac.uk/~horrocks/ESSLI203/

W3C Webont Working Group Documents http://www.w3.org/2001/sw/Webont/
Particularly OWL Web Ontology Language Guide http://www.w3.org/TR/owl-guide/

W3C RDF Core Working Group Documents http://www.w3.org/2001/sw/RDFCore/
Particularly RDF Primer http://www.w3.org/TR/rdf-primer/

Description Logics Handbook http://books.cambridge.org/0521781760.htm

RDF and OWL Tutorials by Roger Costello and David Jacobs
http://www.xfront.com/rdf/
http://www.xfront.com/rdf-schema/
http://www.xfront.com/owl-quick-intro/
http://www.xfront.com/owl/