OWL Tutorial

Reasoning Services

Reasoning services help knowledge engineers and users to build and use ontologies

(Many of the following slides have been taken from a longer tutorial on Logical Foundations for the Semantic Web by Ian Horrocks and Ulrike Sattler)
Ontology engineering tasks:

- design
- evolution
- inter-operation and Integration
- deployment

Further complications are due to

- sheer size of ontologies
- number of persons involved
- users not being knowledge experts
- natural laziness
- etc.
Reasoning Services: what we might want in the Design Phase

- be warned when making meaningless statements
 - test satisfiability of defined concepts
 \[\text{SAT}(C, T) \text{ iff there is a model } I \text{ of } T \text{ with } C^I \neq \emptyset \]
 unsatisfiable, defined concepts are signs of faulty modelling

- see consequences of statements made
 - test defined concepts for subsumption
 \[\text{SUBS}(C, D, T) \text{ iff } C^I \subseteq D^I \text{ for all model } I \text{ of } T \]
 unwanted or missing subsumptions are signs of imprecise/faulty modelling

- see redundancies
 - test defined concepts for equivalence
 \[\text{EQUIV}(C, D, T) \text{ iff } C^I = D^I \text{ for all model } I \text{ of } T \]
 knowing about “redundant” classes helps avoid misunderstandings
Reasoning Services: what we might want when Modifying Ontologies

- the same system services as in the design phase, plus
- automatic generation of concept definitions from examples
 - given individuals \(o_1, \ldots, o_n \) with assertions (“ABox”) for them, create a (most specific) concept \(C \) such that each \(o_i \in C^\mathcal{I} \) in each model \(\mathcal{I} \) of \(T \)
 - “non-standard inferences”

- automatic generation of concept definitions for too many siblings
 - given concepts \(C_1, \ldots, C_n \), create a (most specific) concept \(C \) such that \(\text{SUBS}(C_i, C, T) \)
 - “non-standard inferences”

- etc.
Reasoning Services: what we might want when Integrating and Using Ontologies

For integration:

- the same system services as in the design phase, plus
- the possibility to abstract from concepts to patterns and compare patterns
 ➞ e.g., compute those concepts \(D \) defined in \(T_2 \) such that

\[
\text{SUBS}(\text{Human } \cap (\forall \text{child.}(X \cap \forall \text{child.}Y)), \ D, T_1 \cup T_2)
\]

“non-standard inferences”

When using ontologies:

- the same system services as in the design phase and the integration phase, plus
- automatic classification of individuals
 ➞ given individual \(o \) with assertions, return all defined concepts \(D \) such that

\[
o \in D^I \text{ for all models } I \text{ of } T
\]
(many) reasoning problems are inter-reducible:

\[
\text{EQUIV}(C, D, T) \iff \text{sub}(C, D, T) \text{ and } \text{sub}(D, C, T)
\]

\[
\text{SUBS}(C, D, T) \iff \neg \text{SAT}(C \land \neg D, T)
\]

\[
\text{SAT}(C, T) \iff \neg \text{SUBS}(C, A \land \neg A, T)
\]

\[
\text{SAT}(C, T) \iff \text{cons} \{ o : C \}, T
\]

→ In the following, we concentrate on \text{SAT}(C, T)
Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is

SAT is semi-decidable iff co-SUBS is

→ if SAT is undecidable but semi-decidable, then

there exists a complete SAT algorithm:

\[\text{SAT}(C, T) \iff \text{“satisfiable”}, \text{ but might not terminate if not } \text{SAT}(C, T) \]

there is a complete co-SUBS algorithm:

\[\text{SUBS}(C, T) \iff \text{“subsumption”}, \text{ but might not terminate if } \text{SUBS}(C, D, T) \]

1. Do expressive ontology languages exist with decidable reasoning problems?
 Yes: DAML+OIL and OWL DL

2. Is there a practical difference between ExpTime-hard and non-terminating?
 let’s see
• SHI is a fragment of first order logic

• $SHIQ$ is a fragment of first order logic with counting quantifiers and equality

• SHI without transitivity is a fragment of first order with two variables

• ALC is a notational variant of the multi modal logic K
 - inverse roles are closely related to converse/past modalities
 - transitive roles are closely related to transitive frames/axiom 4
 - number restrictions are closely related to deterministic programs in PDL
Deciding Satisfiability of $SHIQ$

Remember: $SHIQ$ is OWL DL without datatypes and nominals

Next: tableau-based decision procedure for SAT (C, I)

The algorithm proceeds by trying to construct a representation of a model I for C. This can be done because there always is such a representation, and the representation is at most of size exponential in the size of the ontology.
Complexity of DLs: Summary

Deciding satisfiability (or subsumption) of

<table>
<thead>
<tr>
<th>concepts in</th>
<th>Definition</th>
<th>without a TBox is</th>
<th>w.r.t. a TBox is</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC</td>
<td>\cap, \sqcap, \neg, $\exists R.C$, $\forall R.C$,</td>
<td>PSpace-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>S</td>
<td>ALC + transitive roles</td>
<td>PSPace-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>SI</td>
<td>SI + inverse roles</td>
<td>PSPace-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>SH</td>
<td>S + role hierarchies</td>
<td>ExpTime-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>SHIQ</td>
<td>SHI + number restrictions</td>
<td>ExpTime-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>SHIQO</td>
<td>SHI + nominals</td>
<td>NExpTime-c?</td>
<td>NExpTime-c?</td>
</tr>
<tr>
<td>SHIQ +</td>
<td>SHIQ + “naive number restrictions”</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
<tr>
<td>SH +</td>
<td>SH + “naive role hierarchies”</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Complexity of SHIQ (Roughly OWL Lite)

SHIQ is ExpTime-hard because ALC with TBoxes is and SHIQ can internalise TBoxes: polynomially reduce $\text{SAT}(C, T)$ to $\text{SAT}(C_T, \emptyset)$

$$C_T := C \cap \bigcap_{C_i \sqsubseteq D_i \in T} (C_i \Rightarrow D_i) \cap \forall U. \bigcap_{C_i \sqsubseteq D_i \in T} (C_i \Rightarrow D_i)$$

for U new role with $\text{trans}(U)$, and

$$R \sqsubseteq U, R^- \sqsubseteq U$$ for all roles R in T or C

Lemma: C is satisfiable w.r.t. T iff C_T is satisfiable

Why is SHIQ in ExpTime?

Tableau algorithms run in worst-case non-deterministic double exponential space using double exponential time....
Translation of \textit{SHIQ} into Büchi Automata on infinite trees

\[C, T \rightarrow A_{C,T} \]

such that

1. $\textbf{SAT}(C, T)$ iff $L(A_{C,T}) \neq \emptyset$
2. $|A_{C,T}|$ is exponential in $|C| + |T|$

 (states of C,T are sets of subconcepts of C and T)

This yields ExpTime decision procedure for $\textbf{SAT}(C, T)$ since emptyness of $L(A)$ can be decided in time polynomial in $|A|$.

Problem $A_{C,T}$ needs (?) to be constructed before being tested: best-case ExpTime
Fact: for $SHIQ$ and $SHOQ$, $SAT(C, T)$ are ExpTime-complete.

I stands for “with inverse roles”, O” for “with nominals”

Lemma: their combination is NExpTime-hard

even for $ALCQIO$, $SAT(C, T)$ is NExpTime-hard
Naive implementation of SHIQ tableau algorithm is doomed to failure:

Construct a tree of **exponential depth in a non-deterministic way** requires backtracking in a deterministic implementation.

Optimisations are crucial:

A selection of some vital optimisations:
- **Classification**: reduce number of satisfiability tests when classifying TBox
- **Absorption**: replace globally disjunctive axioms by local versions
- **Optimised Blocking**: discover loops in proof process early
- **Backjumping**: dependency-directed backtracking
- **SAT optimisations**: take good ideas from SAT provers
Missing in $SHIQ$ from OWL DL: Datatypes and Nominals

(Remember: I stands for “with inverse roles”, O” for “with nominals”)

So far, we discussed DLs that are fragments of OWL DL

$SHIQ + \text{Nominals} = SHIQO$

- we have seen: $SHIQO$ is NExpTime-hard
- so far: no “goal-directed” reasoning algorithm known for $SHIQO$
- unclear: whether $SHIQO$ is “practicable”
- but: t-algorithm designed for $SHOQ$
- live without nominals or inverses

$SHIQ + \text{Datatypes} = SHIQ(D_n)$
$SHOQ + \text{Datatypes} = SHOQ(D_n)$

- extend $SH?Q$ with concrete data and built-in predicates
- extend $SH?Q$ with, e.g.,
 \[
 \exists \text{age.} > 18 \text{ or } \\
 \exists \text{age, shoeSize. } =
 \]
- relevant in many ontologies
- dangerous, but well understood extension
- currently being implemented and tested for $SHOQ (D)$
In DLs, datatypes are known as **concrete domains**

Concrete domain $D + (\text{dom}(D), \text{pred})$ consists of

- a set $\text{dom}(D)$, e.g., integers, strings, lists of reals, etc.
- a set pred of **predicates**, each predicate $P \in \text{pred}$ comes with
 - **arity** $n \in \mathbb{N}$ and
 - a (fixed!) **extension** $P^n \subseteq \text{dom}(D)^n$
- e.g. predicates on \mathbb{Q}: unary \leq_3, \leq_7, binary \leq, $=$, ternary $\{(x, y, z) \mid x + y = y\}$
We know

- how to reason in SHIQ (proven to be ExpTime-complete)
 implementations and optimisations well understood
- how to reason in $\text{SHOQ}(D)$ (decidable, exact complexity unknown)
 optimisation for nominals \mathcal{O} need more investigations
 optimisation for (D) are currently being investigated
- that their combination, OWL DL1, is more complex: NExpTime-hard
 so far, no “goal-directed” reasoning algorithm known for OWL DL

⇒ accept an incomplete algorithm for OWL DL
⇒ use a first-order prover for reasoning (and accept possibility of non-termination)
⇒ live with OWL Lite while waiting for complete OWL DL algorithm

1. $\text{SHIQO}(D)$ with number restrictions restricted to $\geq nR. \top$, $\leq nR. \top$
ABoxes and Instances

Remember: when using ontologies, we would like to automatically classify individuals described in an ABox

an ABox A is a finite set of assertions of the form

$$C(a) \text{ or } R(a, b)$$

I is a model of A if $a^I \in C^I$ for each $C(a) \in A$

$(a^I, b^I) \in R^I$ for each $R(a, b) \in A$

Cons(A, T) if there is a model I of A and T

Inst(a, C, A, T) if $a^I \in C^I$ for each model I of A and T

Easy: $\text{Inst}(a, C, A, T)$ iff not Cons($A \cup \{\neg C(a)\}$, T)

Example: $A = \{A(a), R(a, b), A(b), S(b, c), B(c)\}$

$T = \{A \sqsubseteq 1R. \top\}$

Inst(a, $\forall R.A$, A, T) but not Inst(b, $\forall S.B$, A, T)
How to decide whether \(\text{Cons}(A, \mathcal{T}) \)?

\[
\rightarrow \text{extend tableau algorithm to start with ABox} \quad C(a) \in A \Rightarrow C \in \mathcal{L}(a) \\
R(a, b) \in A \Rightarrow (a, R, y)
\]

this yields a graph—in general, not a tree
work on forest—rather than on a single tree
i.e., trees whose root nodes intertwine in a graph
theoretically not too complicated
many problems in implementation

Current Research: how to provide ABox reasoning for huge ABoxes
approach: restrict relational structure of ABox
For Ontology Engineering, useful reasoning services can be based on SAT and SUBS.

Are all useful reasoning services based on SAT and SUBS?

Remember: to support modifying ontologies, we wanted:

- automatic generation of concept definitions from examples
 - given ABox A and individuals a_i create
 a (most specific) concept C such that each $a_i \in C^\mathcal{I}$ in each model \mathcal{I} of \mathcal{T}
 $$\text{msc}(a_1, \ldots, a_n), A, \mathcal{T}$$

- automatic generation of concept definitions for too many siblings
 - given concepts C_1, \ldots, C_n, create
 a (most specific) concept C such that $\text{SUBS}(C_i, C, \mathcal{T})$
 $$\text{lcs}(C_1, \ldots, C_n), A, \mathcal{T}$$
Non-Standard Reasoning Services: msc and lcs

Unlike SAT, SUBS, etc., msc and lcs are computation problems.

Fix a DL \mathcal{L}. Define

$$C = \text{msc}(a_1, \ldots, a_n, A, T) \text{ iff } a_i^T \in C^T \forall 1 \leq i \leq n \text{ and } \forall \mathcal{I} \text{ model of } A \text{ and } T,$$

C is the smallest such concept, i.e.,

if $a_i^T \in C'^T \forall 1 \leq i \leq n \text{ and } \forall \mathcal{I} \text{ model of } A \text{ and } T$
then $\text{SUBS}(C, C', T)$

$$C = \text{lcs}(C_1, \ldots, C_n, T) \text{ iff } \text{SUBS}(C_i, C, T) \forall 1 \leq i \leq n$$

C is the smallest such concept, i.e.,

if $C_i \in C' \forall 1 \leq i \leq n$
then $\text{SUBS}(C, C', T)$

Clear: \[
\begin{align*}
\text{msc}(a_1, \ldots, a_n, A, T) &= \text{lcs}(\text{msc}(a_1, A, T), \ldots, \text{msc}(a_n, A, T)) \\
\text{lcs}(C_1, C_2, C_3, T) &= \text{lcs}(\text{lcs}(C_1, C_2, T), C_3, T))
\end{align*}
\]}
Non-Standard Reasoning Services: msc and lcs

Known Results:

- **lcs in DLs with \(\Box \) is useless:** \(\text{lcs}(C_1, C_2, T) = C_1 \sqcap C_2 \)

- **msc(\(a, A, T\)) might not exist:** e.g., \(\mathcal{L} = \mathcal{ALC} \)
 \[
 T = \emptyset \\
 A = \{A(a), R(a, a)\} \\
 \text{msc}(a, A, T) = A \sqcap \exists R.A? A \sqcap \exists R.(A \sqcap \exists R.A)?
 \]

- **\(\exists \) DLs: (SUBS, SAT) msc, lcs are decidable/computable in polynomial time \(\mathcal{EL} \) with cyclic TBoxes (only \(\sqcap \) and \(\exists R.C \))

- **\(\exists \) DLs: lcs can be computed, but might be of exponential size \(\mathcal{ALE} \) (only \(\sqcap \), primitive \(\neg \), \(\forall R.C \), \(\exists R.C \))
Non-Standard Reasoning Services: other

concept pattern: concept with variables in the place of concepts

The following non-standard reasoning services also come w.r.t. TBoxes

unification: \(C \equiv ? D \) for \(C, D \) concept patterns
solution to \(C \equiv ? D \): a substitution \(\sigma \) (replacing variables with concepts)
such that \(\sigma(C) \equiv \sigma(D) \)
Goal: decide unification problem and find a (most specific) such substitution

matching: \(C \equiv ? D \) for \(C \) concept patterns and \(D \) a concept
solution to \(C \equiv ? D \): a substitution \(\sigma \) with \(\sigma(C) \equiv D \)

approximation: given DLs \(\mathcal{L}_1, \mathcal{L}_2 \) and \(\mathcal{L}_1 \)-concept \(C \), find
\(\mathcal{L}_2 \)-concept \(\hat{C} \) with \(\text{SUBS}(C, \hat{C}) \) and
\(\text{SUBS}(C, D) \) implies \(\text{SUBS}(\hat{C}, D) \) for all \(\mathcal{L}_2 \)-concepts \(D \)

rewriting given \(C, \mathcal{T} \), find “shortest” \(\hat{C} \) such that \(\text{EQUIV}(C, \hat{C}, \mathcal{T}) \)
Resources

ESSLI Tutorial by Ian Horrocks and Ulrike Sattler
http://www.cs.man.ac.uk/~horrocks/ESSLI203/

W3C Webont Working Group Documents
http://www.w3.org/2001/sw/WebOnt/
Particularly **OWL Web Ontology Language Guide**
http://www.w3.org/TR/owl-guide/

W3C RDF Core Working Group Documents
http://www.w3.org/2001/sw/RDFCore/
Particularly **RDF Primer**
http://www.w3.org/TR/rdf-primer/

Description Logics Handbook
http://books.cambridge.org/0521781760.htm

RDF and OWL Tutorials by Roger Costello and David Jacobs
http://www.xfront.com/rdf/
http://www.xfront.com/rdf-schema/
http://www.xfront.com/owl-quick-intro/
http://www.xfront.com/owl/