The Random Subspace Method
for Constructing Decision Forests!

Tin Kam Ho

Bell Laboratories, Lucent Technologies

Abstract

Much of previous attention on decision trees focuses on the splitting criteria and optimization
of tree sizes. The dilemma between overfitting and achieving maximum accuracy is seldom
resolved. We propose a method to construct a decision tree based classifier that maintains
highest accuracy on training data and improves on generalization accuracy as it grows in
complexity. The classifier consists of multiple trees constructed systematically by pseudo-
randomly selecting subsets of components of the feature vector, that is, trees constructed
in randomly chosen subspaces. The subspace method is compared to single-tree classifiers
and other forest construction methods by experiments on publicly available datasets, where
the method’s superiority is demonstrated. We also discuss independence between trees in a
forest and relate that to the combined classification accuracy.

keywords: pattern recognition, decision tree, decision forest, stochastic discrimination,
decision combination, classifier combination, multiple classifier system, bootstrapping

1 Introduction

A persistent problem in using decision trees for classification is how to avoid overfitting a set
of training data while achieving maximum accuracy. Some previous studies attempt to prune
back a fully-split tree even at the expense of the accuracy on the training data. Other proba-
bilistic methods allow descent through multiple branches with different confidence measures.
However, their effect on optimizing generalization accuracy is far from clear and consistent.

In [11] we first proposed that combining multiple trees constructed in randomly selected
subspaces can achieve nearly monotonic increase in generalization accuracy while preserving
perfect accuracy on training data, provided that the features are sufficient to distinguish all
samples belonging to different classes, or that there is no intrinsic ambiguity in the datasets.
This offers a better way to overcome the apparent dilemma of accuracy optimization and
over-adaptation. In [11] we showed with empirical results that the method works well with
binary trees that at each internal node split the data to two sides of an oblique hyperplane.

The validity of the method does not depend on the particulars of tree construction algo-
rithms. Other types of splitting functions, including single-feature splits, such as the C4.5

'Parts of this paper have appeared in [11] and [12].

algorithm [26], supervised or unsupervised clustering, distribution map matching [13], and
support vector machines [33] can be readily applied. In this paper we will investigate a
number of alternative splitting functions.

For simplicity, in this paper we assume that the classification problems are in real-valued
feature spaces, though the samples may have only binary or integer feature values. Categor-
ical variables are assumed to be numerically encoded.

2 Methods for Constructing a Decision Tree

Many methods have been proposed for constructing a decision tree using a collection of
training samples. The majority of tree construction methods use linear splits at each internal
node. We will focus on linear splits throughout our discussions.

A typical method selects a hyperplane or multiple hyperplanes at each internal node, and
samples are assigned to branches representing different regions of the feature space bounded
by such hyperplanes. The methods differ by the number and orientations of the hyperplanes
and how the hyperplanes are chosen. We can categorize such methods by the types of splits
they produce that are determined by the number and orientation of the hyperplanes (Figure

1):

O ® O ®
) (ON@) o O]
O O
4O—f O °
® (]
.. PY .. P
® (]
(4 (4 (] ®
O O
o o0 O o 0 ©)

(a) axis-parallel linear splits (b) oblique linear splits (c) piecewise linear splits

Figure 1: Types of linear splits.

1. azis-parallel linear splits: A threshold is chosen on the values at a particular feature
dimension, and samples are assigned to the branches according to whether the corre-
sponding feature values exceed the threshold. Multiple thresholds can be chosen for
assignment to multiple branches. Another generalization is to use Boolean combina-
tions of the comparisons against thresholds on multiple features. These trees can be
very deep but their execution is extremely fast.

2. oblique linear splits: Samples are assigned to the branches according to which side of
a hyperplane or which region bounded by multiple hyperplanes they fall in, but the
hyperplanes are not necessarily parallel to any axis of the feature space. A general-
ization is to use hyperplanes in a transformed space, where each feature dimension
can be an arbitrary function of selected input features. The decision regions of these
trees can be finely tailored to the class distributions, and the trees can be small. The
speed of execution depends on the complexity of the hyperplanes or the transformation
functions.

3. piecewise linear splits: Branches represent a Voronoi tessellation of the feature space.
Samples are assigned based on nearest-neighbor matching to chosen anchor points.
The anchor points can be selected among training samples, class centroids, or derived
cluster centers. These trees can have large number of branches and can be very shallow.

Within each category the splitting functions can be obtained in many ways. For instances,
single-feature splits can be chosen by Sethi and Sarvarayudu’s average mutual information
[28], the Gini index proposed by Breiman et al. [3], Quinlan’s information gain ratio [25], or
Mingers’ G statistic [20] [21] etc. Oblique hyperplanes can be obtained by Tomek links [23],
simulated annealing [7][8], or perceptron training [11]. Hyperplanes in transformed spaces
can be chosen using the support vector machine method [33]. Piecewise linear or nearest-
neighbor splits can be obtained by numerous ways of supervised or unsupervised clustering.
There are also many variations of each popular method and we do not intend to provide a
complete taxonomy. Interested readers are referred to a survey by Dattatreya and Kanal [5].

An important issue often addressed in previous literature is the stopping criterion for tree
construction. Certain types of splits can be produced until the feature space is partitioned
into regions containing only samples of a single class (given that there are no intrinsic am-
biguities among classes), other types of splits have inherent stopping rules that would not
allow such a complete partitioning. A stopping criterion can also be introduced artificially
on any type of splits, for instance, by limiting the number of levels of the tree. Another
approach is to build a fully-split tree and then prune back certain leaves that are considered
overly specific. An alternative to these top-down construction methods is a recently pro-
posed approach that determines the structure of the tree first, and then determines all the
splits simultaneously by optimizing a global criterion [29].

Each splitting function defines a model for projecting classification from the training sam-
ples to unclassified points in the space. From this point of view, it is not surprising to see
that, no method could be universally best for an arbitrary, finite training set. The advantage
of each splitting function depends on the distribution of available training samples and the
difference of that from the true distributions. On the other hand, if the training samples
are sufficiently dense, any one of the functions, if used to generate fully-split trees, yields
similar partitions and classification accuracy. Their only differences will be in the sizes of

the trees and training and execution speed. Therefore we do not emphasize the advantages
and disadvantages of each splitting function and we will leave these to empirical judgement.

3 Systematic Construction of a Forest

Our method is another example of improving accuracy through combining the power of
multiple classifiers [15]. Here each classifier is a decision tree, and we call the combined
classifier a decision forest.

Some previous attempts to construct multiple trees rely on certain heuristic procedures
or manual intervention [19][30][31]. The number of different trees they can obtain is often
severely limited. We emphasize that arbitrarily introduced differences between trees, such
as using randomized initial conditions or perturbations in the search procedures [9], do not
guarantee good combination performance. Here good combination performance is defined
as 100% correct rate on training data and a monotonic decrease in generalization error as
the forest grows in the number of trees, provided that the data do not have any intrinsic
ambiguity. Also, it is important to have a systematic procedure that can produce a large
number of sufficiently different trees.

Our method relies on an autonomous, pseudo-random procedure to select a small number
of dimensions from a given feature space. In each pass, such a selection is made and a
subspace is fixed where all points have a constant value (say, 0) in the unselected dimensions.
All samples are projected to this subspace, and a decision tree is constructed using the
projected training samples. In classification a sample of an unknown class is projected to
the same subspace and classified using the corresponding tree.

For a given feature space of n dimensions, there are 2" such selections that can be made,
and with each selection a decision tree can be constructed. More different trees can be
constructed if the subspace changes within the trees, that is, if different feature dimensions
are selected at each split. The use of randomization in selecting the dimensions is merely a
convenient way to explore the possibilities.

The trees constructed in each selected subspace are fully-split using all training data.
They are hence perfectly correct on the training set by construction assuming no intrinsic
ambiguities in the samples. When two samples cannot be distinguished by the selected
features, there will be ambiguities, but if no decision is forced in such cases, this does not
introduce errors.

For each tree, the classification is invariant for points that are different from the training
points only in the unselected dimensions. Thus each tree generalizes its classification in a
different way. The vast number of subspaces in high dimensional feature spaces provides
more choices than needed in practice. Hence, while most other classification methods suffer

from the curse of dimensionality, this method can take advantage of high dimensionality.
And contrary to the Occam’s Razor, our classifier improves on generalization accuracy as it
grows in complexity.

This method of forest building leads to many interesting theoretical questions. For in-
stance, how many of the subspaces must be used before we can achieve a certain accuracy
with the combined classification? What will happen if we use all the possible subspaces?
How do the results differ if we restrict ourselves to subspaces with certain properties?

Some of these questions are addressed in the theory of stochastic discrimination (SD)
where the combination of various ways to partition the feature spaces is studied [17] [18]. In
the SD theory, classifiers are constructed by combining many components that have weak
discriminative power but can generalize very well. Classification accuracies are related to the
statistical properties of the combination function, and it is shown that very high accuracies
can be achieved far before all the possible weak classifiers are used. The ability to build
classifiers of arbitrary complexity while increasing generalization accuracy is shared by all
methods derived from the SD theory. Decision forest is one of such methods. While other
SD methods start with highly projectable classifiers with minimum enrichment and seek
optimization on uniformity [16], with decision forests, one starts with guaranteed enrichment
and uniformity, and seeks optimization on projectability.

Another previously explored idea to build multiple classifiers originates from the method
of cross-validation. There, random subsets are selected from the training set, and a classifier
is trained using each subset. Such methods are also useful since overfitting can be avoided to
some extent by withholding part of the training data. Two training set subsampling methods
have been proposed: bootstrapping[4] and boosting[6]. In bootstrapping, subsets of the raw
training samples are independently and randomly selected, with replacement, according to
a uniform probability distribution. In boosting, the creation of each subset is dependent on
previous classification results, and a probability distribution is introduced to prefer those
samples on which previous classifiers are incorrect. In boosting weights are also used in final
decision combination, and the weights are determined by accuracies of individual trees. Both
these methods have been known to be superior to single C4.5 trees [27]. In our experiments
we will compare accuracies of forests built by our subspace method to those built by such
training set subsampling methods.

The random subspace method is a parallel learning algorithm, that is, the generation of
each decision tree is independent. This makes it suitable for parallel implementation for
fast learning that is desirable in some practical applications. Moreover, since there is no
hill-climbing, there is no danger of being trapped in local optima.

4 The Combination Function

The decisions of n; individual trees are combined by averaging the conditional probability of
each class at the leaves. For a point z, let v;(x) be the terminal node that z falls into when
it descends down tree T; (j = 1,2,...,m;). Given this, let the probability that x belongs to
class ¢ (¢ =1,2,...,n.) be denoted by P(c|v,(z)).

__ Plev(@)
>rey Plek, vi(2))

P(c|v;(2))

can be estimated by the fraction of class ¢ points over all points that are assigned to v;(z)
(in the training set). Notice that in this context, since the trees are fully split, most terminal
nodes contain only a single class (except for abnormal stops that may occur in some tree
construction algorithms) and thus the value of the estimate P(c|v;(z)) is almost always 1.
The discriminant function is defined as

1 &

gel@) = — 3" Plclo;())

Tt j=1

and the decision rule is to assign x to class ¢ for which g.(z) is the maximum. For fully-split
trees, the decision obtained using this rule is equivalent to a plurality vote among the classes
decided by each tree.

It is obvious that the discriminant preserves 100% accuracy on the training set, provided
that there is no ambiguity in the chosen subspaces. However, it is possible that, two samples
that are distinguishable in the original feature space become ambiguous in a chosen subspace,
especially if there is a large reduction in dimensionality. So caution has to be taken in
applying this method to very low-dimensional data, and the choice of number of features
to select could have a strong impact on accuracy. These will be further illustrated in the
experiments.

For an unseen point, g(x) averages over the posterior probabilities that are conditioned
on reaching a particular terminal node. Geometrically, each terminal node defines a neigh-
borhood around the points assigned to that node in the chosen subspace. By averaging
over the posterior probabilities in these neighborhoods (decision regions), the discriminant
approximates the posterior probability for a given x in the original feature space. This is
similar to other kernel-based techniques for estimating posterior probabilities, except that
here the kernels are of irregular shapes and sizes, and do not necessarily nest.

Because of this, the discriminant is applicable to any algorithm that partitions the feature
space into regions containing only or mostly points of one class, for instance, the method of
learning vector quantization [10]. The analytical properties of the function and its several
variants have been studied extensively by Berlind [2]. Essentially, accuracy of the function is

shown to be asymptotically perfect (as number of component classifiers increases) provided
that a number of conditions on enrichment, uniformity, symmetry, and projectability are
satisfied.

5 Independence Between Trees

For a forest to achieve better accuracy than individual trees, it is critical that there should
be sufficient independence or dissimilarity between the trees. There have been few known
measures for correlation between decision trees. The difference in combined accuracy of
the forest from those of individual trees gives strong but indirect evidence on their mutual
independence.

A simple measure of similarity between two decision trees can be the amount that their
decision regions overlap [32]. On fully split trees each leaf represents a region labeled with
a particular class. On trees that are not fully split the regions can be labeled with the
dominating class (ties broken arbitrarily). Given that, regardless of the structure of the
trees, we can consider trees yielding the same decision regions equivalent (Figure 2). The
similarity of two trees can then be measured by the total volume of the regions labeled with
the same class by both trees.

Given two trees ¢; and t;, let their class decisions for a point = be ¢;(x) and ¢;(z) respec-
tively, we define tree agreement s; ; to be

Sij = /Rp(iv)d-’r,

where R = {z|c;(z) = ¢j(z)}, and p(z) is the probability density function of z.

Cl(x)=1 c2(x)=1 c2(x)=2
Cl(x)=2

C1(x)=2 C2(x)=2

Figure 2: Two trees yielding the same decision regions in a 2-dim feature space (Ci(z) = j
if tree 7 decides that x is in class j).

Given two decision trees, the volume of the overlapping decision regions is determined
and in theory can be calculated exactly. However, depending on the form of the splitting
function and the dimensionality of the space, the calculation could be difficult to carry out.

Alternatively, one may get an approximation by Monte-Carlo integration, i.e., generating
pseudo-random points to a sufficient density in the feature space and measure the agreement
of their classification by the trees.

Assuming that the testing samples are representative for the given problems, we will use
them to measure the tree agreement. This makes the estimation more computationally
feasible and allows us to limit our concern within the neighborhood of the given samples.

It should be noted that severe bias could result if the samples for estimation are not chosen
carefully. For instance, if the training samples are used in this context, since the trees are
fully split and tailored to these samples, by construction the estimate of tree agreement will
always be 1, and this will most likely be an overestimate. On the contrary, since the decision
boundaries can be arbitrary in regions where there is no representative sample, if one uses
pseudo-randomly generated points distributed over regions far outside those occupied by the
given samples, one could risk severely underestimating the tree agreement that is relevant
to the problem.

Using a set of n fixed samples and assuming equal weights, the estimate 3; ; can be written
as

. 1 &
Sij = ﬁ Z f(f'?k);
k=1

1 if ¢i(zk) = cj(zx)
0 otherwise.

where f(ay) = {

6 Comparison of Results of Tree and Forest Classifiers

A series of experiments were carried out using publicly available data sets provided by the
Project Statlog [24]. We used all the four datasets that have separate training and testing
data (“dna”, “letter”, “satimage”, and “shuttle”). In each of these datasets, both training
and testing samples are represented by feature vectors with integer components. Though
some of the feature components are not necessarily numerical by nature (say, the features in
the “dna” set are binary codings of a 4-element alphabet), the samples are still treated as
points in real-valued spaces. There are no missing values of any features in all four datasets.
Table 1 lists the sizes of the training and testing sets provided in each collection.

We compared the accuracies of the following classifiers:

1. Decision forests constructed using the subspace method versus single decision trees.

2. Decision forests constructed using the subspace method versus those constructed using
training set subsampling methods.

Table 1: Specifications of data sets used in the experiments.

name of || no. of | no. of feature no. of no. of
data set | classes | dimensions | training samples | testing samples
dna 3 180 2000 1186
letter 26 16 15000 5000
satimage 6 36 4435 2000
shuttle 7 9 43500 14500

3. Decision forests constructed using the subspace method with different splitting func-
tions.

4. Decision forests constructed using the subspace method with different numbers of ran-
domly selected features.

6.1 Forest built on subspaces versus a single decision tree

We first compared the accuracies of the forests constructed using our method against the
accuracy of using a single decision tree constructed using all features and all training samples.
For easy repetition of results by others, we chose to use the C4.5 algorithm [26] (Release 8)
to construct the trees in either case.

In the experiments the C4.5 algorithm was essentially untouched. The forest construction
procedure was implemented external to the C4.5 algorithm. That means, the features were
randomly selected before the data were input to the algorithm. Decision combination, in
this case approximated by simple plurality voting, was done using the class decisions ex-
tracted from the output of the algorithm. Along with the use of publicly available data, this
experiment can be easily duplicated.

In each run, we first used the original C4.5 algorithm to build an unpruned tree using
all the features, and applied the tree to the testing set. Then we repeated the procedure
with a pruned tree (using default confidence levels). We then constructed a decision forest,
using the same C4.5 algorithm, but for each tree using only a half of the features that were
randomly selected. Each tree was added to the forest and the accuracy of the forest on the
testing set was measured. We continued until 100 trees were obtained in each forest. Figure
3 compares the testing set accuracies of the forests against those obtained using a single
C4.5 tree with the full feature vectors. It is apparent that the forests yield superior testing
set accuracies for these four datasets.

It should be noted that in some of these datasets the number of features is not very large
(dna: 180; letter: 16; satimage: 36; shuttle: 9). But the method still works well with such

relatively low-dimensional spaces. The only exception is that with the “shuttle” data, there
are so few features to choose from that the forest does not display a great advantage over
the single-tree classifier. To apply the method to very low dimensional data, we suggest
first expanding the feature vectors by using certain functions of the original features. In
many cases we found that the inclusion of pairwise sums, differences, products, or Boolean
combinations (for binary and categorical features) of the raw features served as a good
expansion. We will discuss this further in a later experiment with more data sets with very
few feature dimensions.

6.2 Comparison to forests constructed by training set subsam-
pling

In this experiment we compared our method of forest building to other methods where each
tree was constructed using a randomly selected subset of the training data with all the
features. We experimented with both bootstrapping and boosting methods that are of this
category. In bootstrapping, subsets of the same size as the original training set were created
by sampling with replacement in uniform probability. A tree was constructed with each
subset. Boosting was done following the AdaBoost.M1 procedure described in [6].

Again, all trees were constructed by the C4.5 algorithm as in the previous experiment,
and the sample selection procedures were implemented externally. Figure 3 shows the accu-
racies of all the three forests building methods. It can be seen that although the individual
trees (say, the first tree in each forests) built by training set subsampling are sometimes
more accurate, with more trees, the combined accuracies of the random subspace forests are
superior. The results suggest that there is much redundancy in the feature components in
these datasets, but the samples are relatively sparse. Interestingly the results also indicate
that the bootstrapping and boosting methods are very similar in performance.

Table 2: Average tree agreement of forests constructed by each method.

construction data set

method dna letter | satimage | shuttle
random subspaces || 0.7540 | 0.6595 | 0.8228 | 0.9928
bootstrapping 0.9081 | 0.8197 | 0.8294 0.9998
boosting 0.8969 | 0.7985 | 0.8205 0.9996

10

dna data letter data
T T

95.5

random subspaces ——
bootstrapping ----
boosting -----

% correct
I
% correct

C4.5 with pruniﬁg - 86 |

I random subspaces —— b
4 ‘; bootsérapp!ng fffff
] oosting -----
925 11 , 84 1 c4.5 b
C4.5 with pruning ---
T 82 |- B
915 “ Il Il Il Il Il Il Il Il Il 80 Il Il Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
no. of trees no. of trees
satimage data shuttle data
92 T T T 99.99 T T T
99.98
90
99.97
- 88/ - random subspaces —— - 99.96 |-
9 bootstrapping ---- 9
= boosting ----- =
S [c 4_% S 99.95
X 86 C4.5 with pruning ——- B X it
99.94 |- random subspaces — -
’ bootstrapping ----
boosting -----
i 99.93 cas -
84 p , C4.5 with pruning -~
99.92 B
82 Il Il Il Il Il Il Il Il Il 99.91 Il Il Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
no. of trees no. of trees

Figure 3: Comparison of test set accuracies: a single C4.5 tree, forests built by the random
subspace method, and forests built by bootstrapping and boosting (for the “shuttle” data,
accuracies of bootstrapping and the single-tree methods are essentially the same.)

Tree agreement

The differences in tree agreement in forests built using the subspace method and those built
using the other two methods can be shown by our measure 3; ; estimated using the testing
data. Table 2 lists the estimated tree agreement for each forest. Each estimate is averaged
over all 4950 (100x99/2) pairs among 100 trees. For the dna and letter data, the subspace
method yielded very dissimilar trees compared to the other methods. For the other two
datasets the differences are not as obvious. Again, differences between the bootstrapping
and boosting methods are insignificant.

11

6.3 Comparison among different splitting functions

In this experiment, we compared the effects of different splitting functions. Eight splitting
functions were implemented. Some functions can produce multi-branch splits, but for com-
parison across different functions, only binary splits were used. For an internal node to be
split into n branches, the eight functions assign the points in the following ways.

1. single feature split with best gain ratio: Points are assigned to different branches by
comparing the value of a single feature against a sequence of n — 1 thresholds. The
feature and thresholds are chosen to maximize Quinlan’s information gain ratio [25].

2. distribution mapping: Points are projected onto a line drawn between the centroids of
two largest classes. Their distances to one centroid are sorted and a set of thresholds
are selected so that there are the same number of points between each pair of successive
thresholds. Points between a pair of thresholds are assigned to a branch at the next
level [14].

3. class centroids: Centroids of the n — 1 largest classes and that of the remaining points
are computed. A point is assigned to a branch if it is closest to the corresponding
centroid by Euclidean distance.

4. unsupervised clustering: n clusters are obtained by complete-linkage clustering using
Euclidean distance. Points are matched by Euclidean distance to the centroids of
each cluster, and assigned to the branch corresponding to the closest. If there are
more points than a preset limit so that clustering is prohibitively expensive, points are
sorted by the sum of feature values and divided evenly into n groups.

5. supervised clustering: n anchors are initialized using one point from each of the first n
classes. The remaining points are matched to the closest anchor by Euclidean distance.
The anchors are then updated as the centroids of matched points. The process is
repeated for a number of passes and the resulting centroids are used to represent the
branches. Points are assigned to the branch corresponding to the nearest centroid.

6. central azis projection: First we find the two classes whose means are farthest apart
by Euclidean distance. The other classes are matched to these two by proximity of the
means. The centroids of the two groups thus obtained are then computed and a line
(the central axis) is drawn passing through both centroids. All data points are then
projected onto this line. Hyperplanes that are perpendicular to this line are evaluated,
and the one that best divides the two groups (causing minimum error) is chosen. Points
are then assigned to two sides of the chosen hyperplane as two branches. This method
permits only binary splits.

12

7. perceptron: Again the data points are divided into two groups by proximity of the class
means. A hyperplane is then derived using the fixed-increment perceptron training
algorithm [22]. Points are then assigned to two sides of the derived hyperplane. This
method also permits only binary splits.

8. support vector machine: n — 1 largest classes are chosen and the rest are grouped as
one class. Points are transformed to a higher-dimensional space by a polynomial kernel
of a chosen degree. Hyperplanes that maximize margins in the transformed space are
chosen. Each hyperplane divides one class from the others. Points are compared to all
chosen hyperplanes, and assigned to the branch corresponding to the one it matches
with the largest margin [33].

Figure 4 shows the accuracies of the forests that use these eight functions. There are 50
trees in each forest. In each forest the subspace changes at each split. As expected, the effects
of splitting functions are data-dependent and there is no universal optimum. Nevertheless,
the improvements in the forest accuracy with increases in number of trees follow a similar
pattern across different functions and different datasets. This demonstrates the validity of
the forest construction method and its independence of the splitting functions.

Tree agreement

Table 3 shows the average tree agreement (averaged over all 1225 (50x49/2) pairs of 50 trees)
for the eight splitting functions and the four datasets, estimated using the testing samples.
The absolute magnitude of the measure is data dependent. But the relative magnitudes
for the same dataset reveal an interesting pattern. Namely, weaker agreement is observed
for forests built with unsupervised clustering, and stronger agreement is observed for the
forests built with maximum gain ratio (except for the “satimage” data). The forests built
with support vector machines are found to have both the strongest and weakest agreement
depending on the data set. There are significant data-dependent differences in the relative
order among the estimates given by different splitting functions. Once again this suggests
there are no universally optimal splitting functions.

6.4 Comparison among different numbers of random features

In using the subspace method one important parameter to be determined is how many
features should be selected in each split. When the splitting function uses a single feature,
the evaluation of possible splits is constrained within only the selected features. In other
case the hyperplanes are functions of the selected features, so that the number of random
features used could affect the results significantly.

13

% correct

% correct

100

dna data (90 random features)

70 =

60

gain ratio — ,

distribution mapping ---
centroid

unsupervised clustering
supervised clustering -~

central axis projection -----
perceptron -----

support vector machine ----

10 15 20 25 30 35 40
no. of trees

satimage data

45 50

82

gain ratio

distribution mapping
centroid

unsupervised clustering
supervised clustering -

central axis projection -----
perceptron -----

support vector machine

Il Il
10 15 20 25 30 35 40
no. of trees

45 50

100

80

75

% correct

60 |-

55 L

% correct

99.4

99.2

99

70 b

65

letter data

gainratio —

distribution mapping
centroid

unsupervised clustering
supervised clustering ---
central axis projection -----
erceptron -~

support vector machine

5 10 15

20 25 30 35 40 45
no. of trees

shuttle data

50

gain ratio ——

distribution mapping
centroid

unsupervised clustering
supervised clustering -
central axis projection -----
perceptron -~

support vector machine

5 10 15

Il
20 25 30 35 40 45
no. of trees

Figure 4: Comparison of test set accuracies with different splitting functions.

Table 3: Average tree agreement with different splitting functions.

splitting data set

function dna letter | satimage | shuttle
gain ratio 0.8804 | 0.7378 | 0.7980 | 0.9975
dist. mapping 0.7728 | 0.5861 | 0.8188 | 0.9864
centroid 0.7143 | 0.6593 | 0.8310 | 0.9975
unsup. clustering || 0.5337 | 0.5701 | 0.8110 | 0.9885
sup. clustering 0.6137 | 0.6320 | 0.8378 | 0.9812
c. axis projection || 0.8368 | 0.6481 | 0.8440 | 0.9911
perceptron 0.7913 | 0.5758 | 0.8200 | 0.9950
support vectors 0.7907 | 0.4827 | 0.9205 | 0.8720

14

50

We compared the effects of different numbers of features using the “dna” dataset which
has 180 features. Each of the same eight splitting functions was used to construct a forest
of 50 trees. Again, in each forest the subspace changes at each split. The results show that
the effects are stronger on some splitting functions than others (Figure 5). In particular, the
split by maximum gain ratio is less sensitive to the subspace dimensionality. Nevertheless, it
appears that using half of the features resulted in the best or very close to the best combined
accuracies with all splitting functions.

Tree agreement

Table 4 shows the average tree agreement for the eight splitting functions and different
numbers of random features, estimated using the testing set (“dna” data). Again, each
estimate is averaged over all 1225 (50x49/2) pairs of 50 trees. The agreement generally
increases with the number of random features, and the relative ordering among different
splitting functions is in good consistency. Trees built with maximum gain ratio are the most
similar to each other, and those built with unsupervised clustering are least similar.

Table 4: Tree agreement for different numbers of random features (“dna” data).

splitting number of random features
function 12 23 45 90 135
gain ratio 0.7070 | 0.7773 | 0.8498 | 0.8804 | 0.8849
dist. mapping 0.5855 | 0.6555 | 0.7216 | 0.7728 | 0.7530
centroid 0.6168 | 0.6385 | 0.6717 | 0.7143 | 0.6567

unsup. clustering || 0.4618 | 0.4723 | 0.4862 | 0.5337 | 0.5451
sup. clustering 0.5089 | 0.5253 | 0.5507 | 0.6137 | 0.5571
c. axis projection || 0.6412 | 0.7082 | 0.7714 | 0.8368 | 0.8224
perceptron 0.6174 | 0.6811 | 0.7313 | 0.7913 | 0.7968
support vectors 0.4985 | 0.5198 | 0.6281 | 0.7907 | 0.8144

It is important to note that forest accuracy is affected by both the individual tree accuracy
and the agreement between the trees. This means optimizing on either factor alone does
not necessarily result in the best forest accuracy. For instance, for the “dna” data, although
the clustering methods give trees with weakest agreement, their individual accuracies and
thus the forest accuracies are not as good as those obtained by, say, splits by maximum gain
ratio. But recall also that although the training set subsampling methods produce better
individual trees, they are so similar to each other that the forest accuracies are not as good
as those obtained by the subspace method. Ideally, one should look for the best individual
trees with lowest similarity. But exactly how this dual optimization can be done with an
algorithm remains unclear.

15

% correct

% correct

% correct

% correct

split by gain ratio
100 T T T

70

90 random features —— B
45 random features -----
23 random features -----
12 random features
60 | 135 random features --- .
50 |- E
1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45
no. of trees
split by class centroids
100 T T T T
90
80 [|
i
70 Bl o
bt

i 90 random features ——
bt 45 random features ----
R 23 random features -----
¥ 12 random features

60 | 135 random features --- .
50 |- E

Il Il Il Il Il Il Il Il Il

5 10 15 20 25 30 35 40 45

no. of trees
split by unsupervised clustering
100 T T T T T

90 E
80
70 |

90 random features ——
45 random features -----
23 random features -----
12 random features

60 | [135 random features ---

50 ,
L L L L L L L
5 10 15 20 25 30 35 40 45
no. of trees
split by perceptron
100 T

90 random features ——
45 random features ----
23 random features -----
12 random features

135 random features -

50

Il Il
5 10 15 20 25 30 35 40 45
no. of trees

50

% correct

% correct

% correct

% correct

100

70

60

50

100

90

100

70

60

50

100

split by distribution mapping

90 random features ——
45 random features ----
23 random features -----
12 random features

135 random features -~

L
15 20 25 30 35 40 45
no. of trees

split by supervised clustering

90 random features ——
45 random features ----
23 random features -----
12 random features

135 random features -~

Il
15 20 25 30 35 40 45
no. of trees

split by central axis projection

90 random features ——
45 random features ----
23 random features -----
12 random features

135 random features -~

L
15 20 25 30 35 40 45
no. of trees

split by support vector machine
T

70

90 random features ——
45 random features ----
23 random features -----
12 random features

135 random features —--

Il
15 20 25 30 35 40 45
no. of trees

50

Figure 5: Comparison of test set accuracies with different numbers of random features: 90
(1/2 of all), 45 (1/4), 23 (1/8), 12 (1/16), angs135 (3/4).

The tree agreement measure can be used to order the trees in the forest, so that the
most dissimilar trees are evaluated first. This could be useful in practice to obtain better
speed /accuracy tradeoff, that is, to use the least number of trees to achieve a certain accuracy.
Figure 6 compares the accuracy gains obtained when the trees are sorted by increasing
agreement and when they are unsorted. The forest was constructed for the “dna” data using
random halves of the features and the maximum gain ratio as the splitting function.

96

dna data
T

94

92

90 {1 sorted trees — e
unsorted trees ----

88 - B

% correct

86 i -
8a i 4

N
82 H B

80 Il Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
no. of trees

Figure 6: Comparison of test set accuracies between forests with sorted and unsorted trees.

7 Exploiting Redundancy in Data

The Statlog datasets we have used in previous experiments either have a large number of
features or a large number of training samples. For some problems this may not be true. In
this section we discuss the behavior of the subspace method on a collection of datasets that
have a larger variety in size and feature dimensionality. We chose to use datasets from the
UC-Irvine machine learning database that have at least 500 samples and have no missing
values. We again used the C4.5 package to construct all the trees.

Since there is no separate training and testing sets for each problem, we employed a 2-fold
cross-validation procedure. For each problem, we split the dataset randomly into two disjoint
halves, constructed a forest with one half and tested it on the other half. Then the training
and testing sets were swapped and the run repeated. We performed this procedure for ten
times for each dataset. In reporting the test set accuracies, we deleted the outliers, i.e., the
runs with the highest and lowest accuracies, and reported the average of the remaining eight
runs. This is done to avoid misleading results due to occasional bad sampling on some very
small datasets, such as missing an entire class in training or testing. Among these datasets,
the “letter” and “splice” data also belong to the Statlog collection, but instead of being split
into fixed and separated training and testing sets, they were used in the same way with the
others in the cross-validation procedure. For those datasets that have categorical variables,

17

have very few samples, or have very few feature dimensions, we included the cross-products
of all pairs of features in random subspace selection. Table 5 shows the number of samples,
classes, and features as well as the data types for each dataset.

Figure 7 shows the test set accuracies of decision forests constructed by the random sub-
space method, bootstrapping, and boosting, together with those of single C4.5 tree (both
pruned and unpruned) classifiers. From these plots a few observations can be made:

1. For all datasets, the decision forests are more accurate than both pruned and unpruned
single-tree classifiers, and in most cases there are large differences.

2. While all forests are similar in their behavior, namely, accuracies increase with number
of trees, those built by bootstrapping or boosting tend to be in closer competition,
while in some cases those built by the random subspace method follow a different
trend.

3. The subspace method is better in some cases, about the same or worse in other cases
when compared to the other two forest building methods.

4. The effect of data types, i.e., whether the features are numeric, categorical, or mixed,
is not apparent.

To obtain some hints on when the subspace method is better, in Table 5 we have arranged
the entries in the same order with the plots in Figure 7. For the datasets near the beginning of
the table, the subspace method performs the best among the three forest building methods.
For those towards the end of the table, the subspace method does not have an advantage over
the other two methods. From this arrangement and the plots, it should be apparent that
the subspace method is best when the dataset has a large number of features and samples,
and that it is not good when the dataset has very few features coupled with a very small
number of samples (like the datasets “pima”, “tic-tac-toe”, “yeast”) or a large number of
classes (“abalone”). For most other datasets the three methods are in close neighborhood of
one another. Therefore we expect that the subspace method is good when there is certain
redundancy in the dataset, especially in the collection of features. This makes the method
especially valuable for tasks involving low-level features, such as in image recognition (e.g.
[1]) and in other domains of signal processing. For the method to work on other tasks,
redundancy need to be introduced artificially using simple functions of the features.

8 Conclusions

We described a method for systematic construction of a decision forest. The method relies on
a pseudo-random procedure to select components of a feature vector, and decision trees are

18

letter splice vehicle
T

76 T T
96 =
75
74 b
73+
kst o » o
8 8 ! g Vs
5 S s T2 H PN
< e ; e A dom subspaces —
8 £ of random subspaces — B 8 TRV ran
80 random subspaces — 1] Poostapping ! boostrapping -]
boostrapping ---- boosting - boosting -
boosting - 4.5 C45
Lo 45 88 C4.5 with pruning -~ 9 70 Hi C4.5 with pruning --- 4
P C4.5 with pruning - i 3
69 =l
86 H —
70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 68 1 1 1 1 1 1 1 1 1
10 20 30 4 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
no. of trees no. of trees no. of trees
car wdbe kr-vs-kp
92 T 96.5 T 99.3 T T
3 g random subspaces —— 3
o I e p— e
5 895 random subspaces —— 1 5 boostrapping 5
< H - < ca5 a L random subspaces ——
T8 9 C4.5 with pruning - boostrapping -
| boosting -]
; ca5
885 b C4.5 with pruning -~
88 1 b
87.5 4 1
87 1
100 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
no. of trees no. of trees
german segmentation
76 T T 96.8 T T T
86 - 9.6 [
74 |
96.4 [
85 '
9.2 random subspaces —— T
random subspaces — 2| random subspaces — Boosiapping -
5 b boostrapping ---- 5 ; boostrapping ---- 5 boosting -
8 84l boosting - R 8 f boosting - 8 96 Can 9
5 i C45 5 C45 5 C4.5 with -
8 i C4.5 with pruning —-- S sl C4.5 with pruning - i S oss | Wwith pruning i
8 ! 8 E e 3
i] 956 |] 1
68 bl 1
95.4 [f¥
82 1 l
66 i 95.2 B
81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 95 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
no. of trees no. of trees no. of trees
nursery abalone pima
86.2 T T 245 T T ” T
86 | 24 L
858 [1 235 |
23
g § 25 random subspaces —— g
15 J £ boostrapping - £
8 3 0osting S
8 | B3 4.5 7 K3 random subspaces —— 4
4.5 C4.5 with pruning --- bocsérappmg -
i ing -~ 4 0osting -
C4.5 with pruning | a8 1
C4.5 with pruning -~
84.6 1 Nl
71 1
84.4 | B 4
84.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
no. of trees no. of trees no. of trees
tic-tac-toe yeast
92
60
90 -
58 —
88 random subspaces —— 1
boostrapping ---- random subspaces —
3 boosting - 5 boostrapping -~
£ i c45 2 boo?:t‘\:\g - 4
5 86|/ o 4 £
8 N 4.5 with pruning s C4.5 with pruning —--
8 't 8
84 Hi 1 T
i
82 H 4 52 4
80 L - - L L L L L . 50 . I I
10 20 30 40 60 70 80 90 100 10 20 30 40 70 80 90 100

50 50 60
no. of trees no. of trees

Figure 7: Comparison of test set accuracies of forests and single-trees.

19

Table 5: Characterstics of datasets used in comparison of methods.

data no. of | no. of | no. of || feature

set samples | features | classes | type(s)
letter 20000 16 26 || numeric
splice 3190 60 3 || categorical
vehicle 846 18 4 || numeric
car 1728 6 4 || mixed
wdbc 569 30 2 || numeric
kr-vs-kp 3196 36 2 || categorical
Irs 531 93 10 || numeric
german 1000 24 2 || numeric
segmentation 2310 19 8 || numeric
nursery 12961 8 5 || mixed
abalone 4177 8 29 || mixed
pima 768 8 2 || numeric
tic-tac-toe 958 9 2 || categorical
yeast 1484 8 10 || numeric

generated using only the selected feature components. Each tree generalizes classification to
unseen points in different ways by invariances in the unselected feature dimensions. Decisions
of the trees are combined by averaging the estimates of posterior probabilities at the leaves.

Experiments were conducted using a collection of publicly available datasets. Accuracies
were compared to those of single trees constructed using the same tree construction algorithm
but with all the samples and full feature vectors. Significant improvements in accuracy were
obtained using our method. Furthermore, it is clear that as the forests grow in complexity
(measured in the number of trees), their generalization accuracy does not decrease, while
maximum accuracies on the training sets are preserved. The forest construction method can
be used with any splitting function. Eight splitting functions were implemented and tested.
Though there are data dependent differences of accuracies, the improvements in accuracy
with increases in the number of trees follow the same trend. The effects of the number of
random features to be used were also investigated. It was shown that in the chosen example
using half of the feature components yielded the best accuracy. Finally, when compared to
two training set subsampling methods for forest building on fourteen datasets, the subspace
method was shown to perform better when the dataset has a large number of features and
not too few samples. The method is expected to be good for recognition tasks involving
many redundant features.

20

Acknowledgements

The author would like to thank Linda Kaufman who provided the code for constructing
support vector machines, and Don X. Sun for helpful discussions.

References

[1] Y. Amit, D. Geman, K. Wilder, Joint Induction of Shape Features and Tree Classifiers,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 11, November
1997, 1300-1305.

[2] R. Berlind, An Alternative Method of Stochastic Discrimination with Applications to
Pattern Recognition, Doctoral Dissertation, Department of Mathematics, State Univer-
sity of New York at Buffalo, 1994.

[3] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Wadsworth, Belmont, 1984.

[4] L. Breiman, Bagging Predictors, Machine Learning, 24, 1996, 123-140.

[6] G.R. Dattatreya, L.N. Kanal, Decision Trees in Pattern Recognition, in L.N. Kanal, A.
Rosenfeld (eds.), Progress in Pattern Recognition 2, Elsevier, North-Holland, Amster-
dam, 1985.

[6] Y. Freund, R.E. Schapire, Experiments with a New Boosting Algorithm, Proceedings
of the Thirteenth International Conference on Machine Learning, Bari, Italy, July 3-6,
1996, 148-156.

[7] D. Heath, S. Kasif, S. Salzberg, Induction of Oblique Decision Trees, Proceedings of
the 13th International Joint Conference on Artificial Intelligence, 2, Chambery, France,
Aug 28-Sep 3, 1993, 1002-1007.

[8] S. Murthy, S. Kasif, S. Salzberg, A System for Induction of Oblique Decision Trees,
Journal of Artificial Intelligence Research, 2, 1, 1994, 1-32.

[9] D. Heath, S. Kasif, S. Salzberg, Committees of Decision Trees, in B. Gorayska, J.L.
Mey (eds.), Cognitive Technology: In Search of a Humane Interface, Elsevier Science
B.V., 1996, 305-317.

[10] T.K. Ho, Recognition of Handwritten Digits by Combining Independent Learning Vec-
tor Quantizations, Proceedings of the Second International Conference on Document
Analysis and Recognition, Tsukuba Science City, Japan, October 20-22, 1993, 818-821.

21

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

T.K. Ho, Random Decision Forests, Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, Canada, August 14-18, 1995, 278-282.

T.K. Ho, C4.5 Decision Forests, Proceedings of the 14th International Conference on
Pattern Recognition, Brisbane, Australia, August 17-20, 1998.

T.K. Ho, H.S. Baird, Perfect Metrics, Proceedings of the Second International Confer-
ence on Document Analysis and Recognition, Tsukuba Science City, Japan, October
20-22, 1993, 593-597.

T.K. Ho, H.S. Baird, Pattern Classification with Compact Distribution Maps, Computer
Vision and Image Understanding, 70, 1, April 1998, 101-110.

T.K. Ho, J.J. Hull, S.N. Srihari, Decision Combination in Multiple Classifier Systems,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 16, 1, January 1994,
66-75.

T.K. Ho, E.M. Kleinberg, Building Projectable Classifiers of Arbitrary Complexity, Pro-
ceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria,
August 25-30, 1996, 880-885.

E.M. Kleinberg, Stochastic Discrimination, Annals of Mathematics and Artificial Intel-
lrgence, 1, 1990, 207-239.

E.M. Kleinberg, An Overtraining-Resistant Stochastic Modeling Method for Pattern
Recognition, Annals of Statistics, 4, 6, December 1996, 2319-2349.

S.W. Kwok, C. Carter, Multiple Decision Trees, in R.D. Shachter, T.S. Levitt, L.N.
Kanal, J.F. Lemmer (eds.), Uncertainty in Artificial Intelligence, 4, Elsevier Science
Publishers B.V. (North-Holland), 1990, 327-335.

J. Mingers, Expert Systems — Rule Induction with Statistical Data, Journal of the
Operational Research Society, 38, 1987, 39-47.

J. Mingers, An Empirical Comparison of Selection Measures for Decision-Tree Induction,
Machine Learning, 3, 1989, 319-342.

N.J. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying Sys-
tems, McGraw-Hill, New York, 1965.

Y. Park, J. Sklansky, Automated Design of Multiple-class Piecewise Linear Classifiers,
Journal of Classification, 6, 1989, 195-222.

Project StatLog, LIACC, University of Porto, internet address: ftp.ncc.up.pt (directory:
pub/statlog/datasets).

22

[25] J.R. Quinlan, Induction of Decision Trees, Machine Learning, 1, 1986, 81-106.
[26] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[27] J.R. Quinlan, Bagging, Boosting, and C4.5, Proceedings of 13th National Conference
on Artificial Intelligence, Portland, Oregon, August 4-8, 1996, 725-730.

[28] I.K. Sethi, G.P.R. Sarvarayudu, Hierarchical Classifier Design Using Mutual Informa-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 4, July 1982,
441-445.

[29] I.K. Sethi, J.H. Yoo, Structure-Driven Induction of Decision Tree Classifiers Through
Neural Learning, Pattern Recognition, 30, 11, 1997, 1893-1904.

[30] S. Shlien, Multiple Binary Decision Tree Classifiers, Pattern Recognition, 23, 7, 1990,
757-763.

[31] S. Shlien, Nonparametric Classification Using Matched Binary Decision Trees, Pattern
Recognition Letters, 13, February, 1992, 83-87.

[32] P. Turney, Technical Note: Bias and the Quantification of Stability, Machine Learning,
20, 1995, 23-33.

[33] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995.

23

